Thermally induced errors have been approached in multiple ways due to the influence these have over the positional accuracy of a machine tool. Here, approaches regarding environmental thermal fluctuations surrounding a machine tool remain to be explored in detail. These fluctuations have been explored in terms of the heat transfer coefficient and thermal radiation of the machine shop walls, as well as in terms of seasonality and varying thermal gradients. This paper presents additional considerations regarding environmental temperature perturbations, as heat transfer coefficient fluctuations in the machine shop were thought to play a significant role in machine tool thermal deformation a broader term for these phenomena, environmental thermal fluctuations, was defined and evaluated. Specifically, an environmental thermal data survey of a machine shop was explored. This data was then applied to a NC milling machine and a CNC jig borer FEM analyses and compared to experimental data. FEM simulations were then used to demonstrate that convection regimes and heat transfer coefficient values at a machine shop have a significant influence over machining precision. Here, under maximum and minimum heat transfer coefficient values, the NC milling machine and CNC jig borer simulations results showed an error of cut difference up to 36.5 μm and 18.17 μm, respectively. In addition, as the importance of the heat transfer coefficient was highlighted, considerations regarding machine tool surface color were deemed relevant and were described.
In recent years, the urgency to create environmentally-friendly technologies has dramatically increased. However, these technologies are usually not adopted due to their large cost and low profit. Previously the “Double-ECO model” has been proposed as a methodology that reconciles both “Economy” and “Ecology”, which relies on the exploration of technology alternatives that offer an improved mechanical performance. Here, as mechanical performance, cost and environmental impact were meant to be approached under the same degree of priority, this model was thought to offer the basis for a broader technology development framework. The current research initiates said framework by proposing an evaluation platform, which through a transition from a focus on environmental-friendliness towards an improved eco-efficiency definition lays groundwork for an automated evaluation. This was done by defining a dimensionless evaluation parameter based on existing methodologies and referred as the “DE Index”. This paper applied the proposed evaluation method into a machine tool lubrication technology example. It was concluded that, (1) the platform was able to effectively compare technologies under the proposed eco-efficiency parameter, (2) the developed technology possessed improvements in the environmental pollution output, mechanical performance and cost when compared to conventional technologies.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.