Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
In recent years, the use of the interior permanent magnet synchronous machine (IPMSM) in various applications has grown significantly due to numerous benefits. Sensors are used to achieve high efficiency and good dynamic response in IPMSM drives but due to their high cost and reduced overall size of the system, sensorless control techniques are preferred. Non-sinusoidal distribution of rotor flux and slot harmonics are present in the considered IPMSM. In this article, these problems are considered control system disturbances. With the above-mentioned problems, the classical observer structure based on (d-q) fails to estimate at low-speed ranges. This article proposes an observer structure based on a rotor flux vector in (α-β) stationary reference frame, which works using the adaptive control law to estimate speed and position, and a non-adaptive EEMF-based observer to estimate speed and position. Moreover, a comparative analysis between both observer structures at different speed ranges is also considered in this article. The effectiveness of the observer structure is validated by simulation tests and experimental tests using the sensorless control system with a field-oriented control scheme for a 3.5 kW IPMSM drive system.
EN
The use of the interior permanent magnet synchronous machine (IPMSM) drive has profoundly increased in a large number of applications due to numerous advantages. Owing to the disadvantages of mechanical sensors, sensorless control techniques are employed to enhance the performance of the IPMSM drive by removing the effect of noise and gain drift due to the sensor, increasing reliability, cost saving, and reducing overall size. This article presents the comparative analysis between the adaptive observer and non-adaptive extended electromotive force (EEMF) observer based on the active flux concept in a stationary reference frame (α–β). Moreover, the effect of slot harmonics and non-sinusoidal distribution of rotor flux is present in the three-phase IPMSM, this problem is considered as the control system disturbances in this article. Due to the non-sinusoidal distribution of flux and slot harmonics, the observer structure in the rotating reference frame (d–q) fails to estimate at the low-speed operation range. Comparative analysis between adaptive and non-adaptive observer structures is provided for a wide speed range. The effectiveness of the observer structures is examined using the classical field-oriented control scheme. In the end, simulation and experimental results are demonstrated to validate the performance of the sensorless control scheme using the adaptive and non-adaptive observer structures for the three-phase IPMSM drive setup.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.