Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
School of Automation and Electrical Engineering, Lanzhou Jiaotong University, Lanzhou, China To address the overvoltage problem caused by the reverse flow of current when a high proportion of distributed photovoltaic (PV) is connected to the distribution network, this paper proposes a grid-connected voltage regulation control strategy based on the cluster division of the Distributed Model Predictive Control (DMPC) algorithm. Firstly, the overvoltage responsibility of each node is calculated using the Shapley value method. This is combined with k-means clustering to achieve effective cluster division, enabling dynamic adjustment of the active and reactive power of photovoltaic power generation units to stabilize regional voltage. Secondly, a group grid-connected voltage control strategy is introduced. This strategy controls the active and reactive power outputs by integrating real-time power output and voltage information from PV generating units in the region with the DMPC algorithm, ensuring overall voltage stability of the grid-connected system. Finally, actual overvoltage data from a 10 kV distribution line in the Dingxi power grid, Gansu Province, is used to verify that under the proposed control strategy, PV grid-connected overvoltage nodes are maintained within 1.06 p.u. The control effect is improved by a margin of 0.05 compared to traditional control methods. This demonstrates the effectiveness of the grouped grid-connected voltage regulation control strategy, achieving smoother voltage regulation performance in distributed PV grid-connected systems.
EN
In reality, sudden updates of software, attacks of hackers, influence of the Internet market, etc. can cause a surge in the number of open-source software (OSS) faults (this moment is the time when impulse occurs), which results in impulsive phenomenon. For the existing software reliability models, dynamic process of software fault is considered to be continuous when assessing reliability, but continuity of the process can be disrupted with appearance of random impulses. Thus, to more accurately assess software reliability, we proposed an OSS reliability model with SIDE. In the model, dynamic process of software fault is divided into a continuous and a skipped part, described the continuous part of the process with SDE, and described destruction of the continuity caused by unpredictable random events with random impulses. Finally, the proposed model is verified with two datasets from real OSS project, and the results show that the proposed model is more in line with reality and has better fitting effect than the existing models.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.