Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 4

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
In the beginning of July 2010, a ground fissure was observed in the field near the village of Mavropigi (Northern Greece) and specifically in its NW side. Later on (early September), a second ground fissure was perceived, close and almost parallel to the first one and very close to the limits of the lignite exploitation mine (by the Public Power Corporation, PPC). It was observed that the village of Mavropigi slides away slowly towards the PPC lignite mine. Geological, seismological, as well as geotechnical survey in the field indicated that the phenomenon is related to the coal mining exploitation in the near vicinity of the village rather than to any seismotectonic activity in the surrounding area.
EN
The Mw6.2 Lefkada earthquake occurred on 14 August 2003 beneath the western coastline of Lefkada Island. The main shock was followed by an intense aftershock activity, which formed a narrow band extending over the western coast of the Island and the submarine area between Lefkada and Kefalonia Islands, whereas additional off fault aftershocks formed spatial clusters on the central and northwestern part of the Island. The aftershock spatial distribution revealed the activation of along-strike adjacent fault segment as well as of secondary faults close to the main rupture. The properties of the activated segments were illuminated by the precisely located aftershocks, fault plane solutions determination and the cross sections performed parallel and normal to their strike. The aftershock focal mechanisms exhibited mainly strike slip faulting throughout the activated area, although deviation of the dominant stress pattern is also observed. The results help to emphasize the importance of the identification of activated nearby fault segments possibly triggered by the main rupture. Because such segments are capable to produce moderate events causing appreciable damage, they should be viewed with caution in seismic hazard assessment in addition to the major regional faults.
EN
An M8.3 earthquake struck the southwestern part of the Hellenic Arc, near the Island of Crete, in AD 365, generating a tsunami that affected almost the entire eastern Mediterranean region. Taking into account that the time history of seismic-ity in this region is fairly complete for such earthquakes in the historical catalog, which can be dated as back as the 5th century B.C., there is no indication that this segment of plate boundary has been fully ruptured again. The seismic hazard associated with this part of the Hellenic Arc necessitates the evaluation of the rupture characteristics of this great event. The constraint of the faulting geometry was initially achieved by using information from seismicity, and the focal mechanisms of earthquakes that occurred during the instrumental period. A rupture model for this great earthquake is constructed by assuming an elastic medium and calculating the theoretical surface displacements for various fault models that are matched with the observed surface deformation gleaned from historical reports. The resulted fault model concerns thrust faulting with a rupture length of 160 km and a seismic moment of 5.7×1028 dyn*cm, an average slip of 8.9 m and a corresponding moment magnitude equal to 8.4, in excellent agreement with the macroseismic estimation. The absence of such events recurrence is an indication of the lack of complete seismic coupling that is common in subduction zones, which is in accordance with the back arc spreading of the Aegean microplate and with previous results showing low coupling for extensional strain of the upper plate.
EN
The Xiaojiang fault zone constitutes part of the major Xianshuihe¨CXiaojiang left lateral structure that bounds the rhombic-shaped block of Yunnan¨CSichuan to the east. Long strike slip fault zones that have repeatedly accommodated intense seismic activity, constitute a basic feature of southeast China. Known historical earthquakes to have struck the study area are the 1713 Xundian of M6.8, 1725 Wanshou mountain of M6.8, the 1733 Dongchuan of M7.8, and the strongest one, the 1833 Songming of M8.0. Although instrumental record did not report events of this magnitude class, the 18th century clustering as well as the 19th century large event prompted the investigation of stress transfer along this fault zone. Coulomb stress changes were calculated assuming that earthquakes can be modeled as static dislocations in an elastic half-space, and taking into account both the coseismic slip in strong (M ˇÝ 6.8) earthquakes and the slow tectonic stress buildup along the major fault segments. Geological and geodetic data are used to infer the geometry of these faults and long term slip rates on them, as well as for the fault segments that slipped. Evidence is presented that the strong historical events as well as the ones of smaller magnitude that occurred during the instrumental era, are located in areas where the static stress was enhanced. By extending the calculations up to present, possible sites for future strong events are identified.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.