Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 4

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
This article investigates the impact of a passenger car on a tree, which resulted in the car body breaking apart. A side impact of the car on a tree at high driving speeds is not a standard test in the provisions of the applicable Directives of the European Economic Community, even though the impact poses a serious threat to the driver and the passengers. The threat comes from a deep impaction of the barrier into the body which damages the safety cage. For such impacts, it is very difficult for the vehicle speed to be reconstructed. In practice, expert witnesses and appraisers usually disregard the bodybreaking-apart-related energy due to a difficulty in establishing the data for such calculations, which leads to simplifications and speed underestimates. Performing the right simulation of such impacts with accident reconstruction programs without determining the adequate input data for calculations is also impossible to calculate. This paper presents a range of studies and calculations for such incidents and for identifying the input parameters for collision simulations. The approach presented in this article should be used by expert witnesses and researchers. Therefore, this paper provides insights into theory and practice.
EN
Use of a vehicle involves a risk of collision and, consequently, high costs of post-accident repairs. Therefore, if there is no insurance cover and the repair must be paid by the vehicle owner, some of them choose to file fraudulent insurance claims as the damage can be very difficult to verify. Payments of undue damages pose a major social and economic problem. This article deals with these problems and puts forward a proposition of insurance claim verification by means of a new research method to increase the efficiency of detection and elimination of such claims. This new method requires division of the damage-verification process into static analysis (S), dynamic analysis (D) and analysis of characteristic damage (C). The obtained results show that insurance companies have had problems with selection of appropriate research methods to verify the insurance claims. Application of the proposed new method allows to reduce payments of undue damages and the costs of court proceedings.
EN
The number of motor vehicles in the European Union (EU) is constantly increasing, which is causing an increase in the traffic volume. This, in turn, boosts the economic development of the EU member states. However, an increase in traffic volume leads to road collisions and accidents, which lead to high repair costs. Some accident victims report fake vehicle damage to extort money for repairs. There are criminal groups that stage accidents for this purpose; thus, these claims are very difficult to verify. Thus, it is not enough to verify the sustained damage only by comparing the geometric parameters of the impact traces. New, modern research methods with simulation programs need to be used in order to reconstruct the course of an accident. The SDC (Static Dynamic Characteristic method) provides the possibility of vehicle damage verification, according to this convention. However, simplified modelling with the use of simulation programs involves the necessity of identification of input parameters in order to reconstruct a collision and the vehicle’s post- collision movement. If the input parameters are not correct, the simulation results will also be incorrect, which will have a direct impact on the parties involved in potential legal proceedings, both civil and criminal. This study deals with the identification of the impact parameters and sensitivity of the simulation results to input data. Impact verification with the SDC method shows both a knowledge enhancement and a practical value. They can be used by experts, expert witnesses, computer programmers, researchers and students.
EN
This article presents a study on reconstruction of a crash of a passenger car – Opel Mokka, into a pillar. Computer simulations were performed with software V-SIM4, both for default data and data identified from the crash test. The crash test was performed by AUTOBILD and DEKRA. The frontal collision with a pillar is not a standard crash test recommended by the Directives of Communaut´e ´Economique Europ´eenne (CEE), even though this type of collision poses a serious threat to the safety of vehicle users. The threat comes from the large penetration of the vehicle body through the pillar. These accidents are difficult to reconstruct with the programs applied by expert witnesses, because they require a lot of experience and changes in many parameters. Identification of these parameters is critical in this case. Values of the parameters were identified from recorded images. The obtained results of simulation show strong sensitivity of the accident course to the position of the force application point, which acts between the pillar and the vehicle. Also, the key factors are: contact parameters, identification of the initial conditions, sensitivity of the course of the accident to the adopted values of the parameters, and knowledge of the limitations of any software. Many expert witnesses do not even realise that their results of simulations, based on default values, are faulty. The process of obtaining an agreement between the simulation and experimental results is a time-consuming iteration process. This process is described in this article, which is address to expert witnesses and researchers; moreover, a direction for development of software was suggested.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.