Cu-Sn alloys have been known as bronze since ancient times and widely used as electrode materials, ornaments, tableware and musical instruments. Cu-22Sn alloy fabrication by hot forging process is a Korean traditional forged high-tin bronze. The tin content is 22 percent, which is more than twice that of bronze ware traditionally used in China and the West. Copper and tin have a carbon solubility of several ppm at room temperature, making Cu-Sn-C alloys difficult to manufacture by conventional casting methods. Research on the production of carbon-added copper alloys has used a manufacturing method that is different from the conventional casting method. In this study, Cu-22Sn-xC alloy was fabricated by mechanical alloying and spark plasma sintering. The carbon solubility was confirmed in Cu-Sn alloy through mechanical alloying. The lattice parameter increased from A0 to C2, and then decreased from C4. The microstructural characteristics of sintered alloys were determined using X-ray diffraction and microscopic analysis. As a result of comparing the hardness of Cu-22Sn alloys manufactured by conventional rolling, casting, and forging and Cu-22Sn-xC alloy by sintered powder metallugy, B0 sintered alloy was the highest at about 110.9 HRB.
The austenitic stability and strain-induced martensitic transformation behavior of a nanocrystalline FeNiCrMoC alloy were investigated. The alloy was fabricated by high-energy ball milling and spark plasma sintering. The phase fraction and grain size were measured using X-ray diffraction. The grain sizes of the milled powder and the sintered alloy were confirmed to be on the order of several nanometers. The variation in the austenite fraction according to compressive deformation was measured, and the austenite stability and strain-induced martensitic transformation behavior were calculated. The hardness was measured to evaluate the mechanical properties according to compression deformation, which confirmed that the hardness increased to 64.03 HRC when compressed up to 30%.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.