Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 1

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
1
Content available remote Parallel classification model of arrhythmia based on DenseNet-BiLSTM
EN
In order to improve the classification performance of the model for different kinds of arrhythmias, a parallel classification model of arrhythmia based on DenseNet-BiLSTM is researched and proposed. Firstly, the model adopts a parallel structure. After wavelet denoising and heartbeat segmentation of ECG signals, this model can simultaneously capture the waveform features of small-scale heartbeat and large-scale heartbeat containing RR interval; Then, based on deep learning, Densely connected convolutional network (DenseNet) is applied to improve the model’s ability to extract local features of ECG signals, and bidirectional long short-term memory network (BiLSTM) is introduced to improve the performance of the model in extracting time series features of ECG signals; Finally, weighted cross entropy loss function is used to alleviate the class imbalance of arrhythmia, and Softmax function is applied to achieve 4 classifications of arrhythmia. Experiments based on MIT-BIH arrhythmia database show that under the intra-patient paradigm, training time for each epoch, overall accuracy, F1 and specificity are 42 s, 99.44%, 95.89% and 99.32%, respectively; Under the inter-patient paradigm, training time for each epoch, overall accuracy, F1 and specificity are 23 s, 92.37%, 63.49% and 94.51%, respectively. Compared with other classification models, the model proposed in this paper has a good classification effect and is expected to be used in clinical auxiliary diagnosis.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.