Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!

Znaleziono wyników: 4

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
1
EN
The purpose of the study was to evaluate the methods of processing whey. The valorization method is suitable for the use of cheese whey and whey permeate to produce beverages with or without microbial conversion. However, this method does not ensure microbial conversion of lactose. Therefore, the organic load will not be reduced. The main advantage of aerobic decomposition is the relatively rapid degradation of organic matter. However, the high organic load in the crude cheese whey makes aerobic decomposition unsuitable and restrictions on oxygen transport may occur. Anaerobic decomposition can be used in various areas for the treatment of waste with a high organic load. The disadvantage of anaerobic processes is a higher cost compared to aerobic treatment. The combination of individual technologies significantly reduces the hydraulic retention time of the aerobic process and improves waste treatment. At present, there is a lack of studies in this area.
2
Content available remote Assessment of biological degradability of the waste produced by food industry
EN
Organic waste from production processes is unutilised potential for the production of energy from renewable sources. The submitted paper studies the conditions of anaerobic degradation of selected waste from food industry (diary and distillery) when biogas is produced. Both types of organic waste have low pH values. Ash form municipal incineration as a material for the treatment of pH of waste was used. Except for the pH increase during anaerobic degradation, ash also serves as a source of macroelements for inoculum microorganisms. Kinetics of anaerobic biological digestion of organic material based on the change of pressure and biogas production depending on the ash addition (change of pH) of input samples was observed. Beside these tests, degradability of the waste was assessed by limiting biologically degradable ratio, BR and specific speed of degradability, q. pH values were adjusted with different amounts of ash (0.5; 1.8; 2.7 g/g of dry matter of organic material). Results of the research confirmed that the addition of optimum amount of ash has a positive effect on anaerobic degradation of organic materials.
EN
The bottom ash from municipal solid waste incineration is the most important by-product, in terms of energy recovery from municipal solid waste. Safe treatment and reuse of this bottom ash in construction materials is one of the ways of its effective use. The specific use precedes the study of the properties of the bottom ash from municipal solid waste incineration. In this study, samples of bottom ash were examined via sieve analysis, basic chemical parameters, ecotoxicological property analysis and determination of heavy metals (As, Cd, Cr, Cu, Pb, Ni, Zn). The sieve analyses of samples showed different contents of individual fractions. Ecotoxicological tests for acute toxicity on Daphnia magna in the raw aqueous extract showed positive results mortality of all individuals after 24 hours. The toxic effect of bottom ash was confirmed by the content of heavy metals.
EN
The paper is focused on the research of ecotoxicological properties of mortar prisms produced with partial cement replacement by ash from energy recovery of municipal waste. Two types of ash were used: ash from incineration and ash from municipal waste gasification. According to the Waste Catalogue, ash is considered other waste, which is non-hazardous and nowadays it is predominantly landfilled. Negative results of standardized biotests are inevitable precondition for the use of ash for construction products. The results from both biotests (acute toxicity test on aquatic organisms Daphnia magna and growth inhibition test of higher cultivated plants Sinapis alba) confirmed suitability of cement replacement by ash from energy recovery of municipal waste. Environmental safety of produced mortar prisms is different. Recommended replacement of cement with ash, obtained from municipal waste gasification, is 10% and with ash gained from incineration is 15%. The use of this type of waste in construction industry will lead to the decrease of landfilled waste. Due to the replacement of cement with waste (from industrial branches) natural resources of raw materials used in the process of cement production are saved.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.