Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 3

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
This study investigated the suitability of Ijero-Ekiti quartz as a refractory raw material for industrial furnace applications. In order to ascertain its prospective applications, the thermal behaviour, mineralogical composition and chemical composition were determined. Ijero-Ekiti quartz was characterized using Fourier Transform Infrared Spectroscopy (FTIR), X-ray Diffraction (XRD), Thermogravimetric and Differential Thermal analysis (TGA and DTA). Its thermal conductivity with specific heat coefficient was determined. The outcome revealed that the quartz sample has a high purity of 94.3% SiO2, making it suitable as a refractory material. The XRD analysis revealed the presence of alpha-quartz as the dominant crystal phase, which is desirable for refractory applications. The FTIR analysis indicated the absence of hydroxyl (-OH) groups. This indicates a low risk of failure and damage such as spalling, cracking and other forms of damage when produced into bricks. The TGA and DTA displayed significant mass losses and large endothermic bands, which were connected to the dehydroxylation of the quartz rock samples. Based on the demonstrated qualities, the quartz rock sample could be subjected to thermal processing. This study therefore established that Ijero-Ekiti quartz is a suitable raw material for refractory applications due to its high purity, alpha-quartz dominant crystal phase, absence of hydroxyl groups, and uniform morphology.
EN
The influence of the refractory coating which is a mixture of silica flour and kaolin on the surface roughness of the plate castings produced using evaporative patterns had been considered in this work. The kaolin was used as a binder and ratio method was employed to form basis for the factorial design of experiment which led to nine runs of experiments. Methyl alcohol at 99% concentration was used as the carrier for the transfer of the coating to the surface of the patterns. Pouring temperature was observed as a process parameter alongside the mix ratios of the coating. Attempts were made to characterize the refractory coating by using two methods; differential thermal analysis (DTA) and X-ray diffraction. Attempt was also made to characterize the casting material. Gating system design was done for the plate casting to determine the correct proportions of the gating parameters in order to construct the gating system properly to avoid turbulence during pouring of liquid metal. A digital profilometer was used to take the measurements of the surface roughness. It was observed that the mix ratio 90% silica flour-10% kaolin produced the lowest value of the surface roughness of the plate castings and had the lowest material loss in the DTA test. The pouring temperature of 650oC produced best casting.
EN
Moulding properties of Isasa River Sand bonded with Ipetumodu clay (Ife-North Local Government Area, Osun State, Nigeria) were investigated. American Foundry men Society (AFS) standard cylindrical specimens 50mm diameter and 50mm in height were prepared from various sand and clay ratios (between 18% and 32%) with 15% water content. The stress-strain curves were generated from a universal strength testing machine. A flow factor was calculated from the inclination of the falling slope beyond the maximum compressive strength. The result shows that the flowability of the samples increases from 18% to 26% clay content, its maximum value was attained at 26% and then it decreases from 30% to 32% clay content. The green compressive strength, dry compressive strength and air permeability values obtained from the mould samples were in accordance with standard values used in foundry practice. The x-ray diffraction test shows that the sand contains silicon oxide (SiO2), Aluminium oxide (Al2O3), and Aluminium silicate (Al6Si2O13). The mould samples were heated to a temperature of 1200 oC to determine the sintering temperature; fussion did not take place at this temperature. The results showed that the sand and clay mixture can be used to cast ferrous and non-ferrous alloys.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.