Ograniczanie wyników
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 1

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
The sliding of straight steel fiber within a hardened concrete matrix is considered as the final stage of the pull-out force resistance. If the fiber has enough embedment length and the load reaches the applicable maximal force, the fiber may reach its yield strength leaving some length in the concrete. The interfacial-failure in bond strength starts gradually through interfacial debonding, which develops forward until covering whole embedment length of the fiber in the concrete. Then the fiber starts in resisting the further forces by friction stresses which are generated through frictional sliding process. These friction stresses work as an interfacial-shear forces and aim to satisfy the balance with that further forces. The sum of shear stresses at the interface decreases gradually due to gradual decreasing in the remained length of the fiber inside the concrete, what causes gradual decreasing in the tensile load capacity until an overall fracture in the composite. In this research paper, a clarification and an analysis of the sliding mechanism are introduced through an experimental study. In addition to that, there is a comparison between experimental results and simulations results, where specific computer simulations are prepared to show the deformation shape for each of the fiber and the concrete, as well as a clarification of the failure reasons in the adhesion at the interface between the fiber and the concrete. At the last part of this paper, a dynamical analysis has been achieved using an analytical model, which represents each of the experimental cases and the computer simulations, as well as an appropriate formulas govern the effect of the friction have been written.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.