Cardiovascular diseases (CVDs) are a group of heart and blood vessel ailments that can cause chest pain and trouble breathing, especially while active. However, some patients with heart disease have no symptoms and may benefit from screening. Electrocardiogram (ECG) measures electrical activity of the heart using sensors positioned on the skin over the chest, and it can be used for the timely detection of CVDs. This work presents a technique for classification among lethal CVDs like atrial fibrillation (Afib), ventricular fibrillation (Vfib), ventricular tachycardia (Vtec), and normal (N) beats. A novel combination of Stationary wavelet transforms (SWT) and a two-stage median filter with Savitzky–Golay (SG) filter were utilised for pre-processing of the ECG signal followed by segmentation and z-score normalisation process. Next, 1-D six-layers convolutional neural network (1- D CNN) was used for automated and reliable feature extraction. After that, bidirectional long short-term memory (Bi-LSTM) was used in the back end for classification of arrhythmias. The novelty of the present work is the use of 1-D CNN and Bi-LSTM architecture followed by relevant and effective pre-processing of the ECG signal makes this technique accurate and reliable. An accuracy of 99.41 % was achieved using 10-fold cross validation, which is superior to the existing state-of-art methods. Thus, this method presents a noble, accurate, and reliable method for classification of cardiac arrhythmia beats.
2
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
Accurate and early detection of cardiac arrhythmia present in an electrocardiogram (ECG) can prevent many premature deaths. Cardiac arrhythmia arises due to the improper conduction of electrical impulses throughout the heart. In this paper, we propose an improved RR interval-based cardiac arrhythmia classification approach. The Discrete Wavelet Transform (DWT) and median filters were used to remove high-frequency noise and baseline wander from the raw ECG. Next, the processed ECG was segmented after the determination of the QRS region. We extracted the primary feature RR interval and other statistical features from the beats to classify the Normal, Premature Ventricular Contraction (PVC), and Premature Atrial Contraction (PAC). The K-Nearest Neighbour (k-NN), Support Vector Machine (SVM), Decision Tree (DT), Naı¨ve Bayes (NB), and Random Forest (RF) classifier were utilised for classification. Overall performance of SVM with Gaussian kernel achieved Se % = 99.28, Sp % = 99.63, +P % = 99.28, and Acc % = 99.51, which is better than the other classifiers used in this method. The obtained results of the proposed method are significantly better and more accurate.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.