Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 9

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
The subject of the work is the analysis of thermomechanical bending process of a thin-walled tube made of X5CrNi18-10 stainless steel. The deformation is produced at elevated temperature generated with a laser beam in a specially designed experimental setup. The tube bending process consists of local heating of the tube by a moving laser beam and simultaneous kinematic enforcement of deformation with an actuator and a rotating bending arm. During experimental investigations, the resultant force of the actuator and temperature at the laser spot are recorded. In addition to experimental tests, the bending process of the tube was modelled using the finite element method in the ABAQUS program. For this purpose, the tube deformation process was divided into two sequentially coupled numerical simulations. The first one was the heat transfer analysis for a laser beam moving longitudinally over the tube surface. The second simulation described the process of mechanical bending with the time-varying temperature field obtained in the first simulation. The force and temperature recorded during experiments were used to verify the proposed numerical model. The final stress state and the deformation of the tube after the bending process were analyzed using the numerical solution. The results indicate that the proposed bending method can be successfully used in forming of the thin-walled profiles, in particular, when large bending angles and a small spring-back effect are of interest.
PL
W niniejszym artykule autor przedstawia założenia oraz wstępne wyniki badań doświadczalnych procesu kształtowania elementów cienkościennych przy pomocy hybrydowej metody laserowo-mechanicznej. W prezentowanej metodzie została użyta nieruchoma wiązka laserowa o przekroju prostokątnym. Autor prezentuje m.in.: główną ideę metody hybrydowej, jedną z wybranych do realizacji koncepcji, projekt stanowiska oraz wykonane stanowisko do gięcia cienkościennych rur i dyfuzorów stożkowych stosowanych w budowie silników lotniczych. Docelowym materiałem badań są żarowytrzymałe nadstopy niklu Inconel 618 i Inconel 625 oraz żaroodporne stale martenzytyczne AISI 410 i AISI 325. Materiały te, ze względu na ich wysokie właściwości mechaniczne przy pracy w podwyższonej temperaturze, używane są do budowy podzespołów silników turbośmigłowych. Ze względów ekonomicznych próby zostały wykonywane na austenitycznej stali kwasoodpornej X5CrNi18-10. Prezentowana w artykule metoda hybrydowa (założenia, koncepcja, projekt) została poddana walidacji w warunkach laboratoryjnych. Zmierzono siły potrzebne do uzyskania odkształceń plastycznych w elemencie, kąt gięcia oraz ustalono temperaturę procesu. Ważną innowacją procesu jest kontrolowanie temperatury w jego trakcie. Pozwala to na zachowanie struktury wyjściowej stali, a tym samym na utrzymanie właściwości wytrzymałościowych produktu. Na podstawie przeprowadzonych badań planuje się wykonać symulacje numeryczne procesu oraz wykonać badania metalograficzne gotowych komponentów. Ponadto prowadzone badania wskazują kierunek dalszych działań. Przejawia się to m.in. w ciągłym modyfikowaniu konstrukcji oraz samego procesu. Przedstawione wyniki testów zostały poddane dyskusji. Na podstawie uzyskanych efektów zostaną zaplanowane dalsze prace nad hybrydową metodą laserowo-mechaniczną formowania elementów cienkościennych.
EN
In this paper, author presents the assumptions and preliminary results of experimental tests of the process of forming thin-walled elements using a hybrid, laser-mechanical technique. An immobile laser beam with a rectangular cross-section was used in the presented method. Author presents, among other things: the main idea of the hybrid method, one of the concepts selected for realization, design of the test stand and the station that was built for bending of thin-walled pipes and conical diffusers used in the design of aircraft engines. Inconel 618 and Inconel 625 high-temperature creep-resistant nickel superalloys and AISI 410 and AISI 325 heat-resistant martensitic steels are the target materials for testing. Due to their high mechanical properties during work at elevated temperatures, these materials are used in the construction of turboprop engine subassemblies. For economic reasons, tests were performed on X5CrNi18-10 acid-resistant austenitic steel. The hybrid method presented in the paper (assumptions, concept, design) was validated under laboratory conditions. The forces required to obtain plastic strains in the element and bending angle were measured, and the temperature of the process was determined. Temperature control throughout the process is an important innovation. It makes it possible to preserve the steel’s initial structure and thus maintain the product’s strength properties. Based on the tests performed, it is planned to conduct numerical simulations of the process and perform metallographic examinations of ready components. Moreover, the research conducted indicates the direction of further action. This is shown by, among other things, continuous modification of the design and the process itself. The presented test results are discussed. Based on obtained effects, further work on the hybrid laser-mechanical method of forming thin-walled elements will be planned.
3
Content available remote System synchronizacji napędów urządzenia do laserowo-mechanicznego gięcia rur
PL
Opisano system sterowania napędami w przyrządzie do gięcia rur cienkościennych, wykonanym na potrzeby badań prowadzonych w ramach projektu NCBR PBS/A5/47/2015. Przedstawiono projekt układu mechanicznego oraz krótko scharakteryzowano system sterowania. Zwrócono uwagę na wady i zalety rozwiązania. Zaproponowano możliwe modyfikacje układu w celu poprawy jego funkcjonalności.
EN
The drives control system of bending equipment for thinwalled pipes has been presented. The design of the mechanical system was presented and the control system was briefly characterized. The advantages and disadvantages of the presented solution are discussed. Possible modifications of the system have been proposed in order to improve its functionality.
4
Content available remote Laserowo-mechaniczne formowanie elementów cienkościennych
PL
W niniejszym artykule autorzy przedstawiają założenia oraz wstępne wyniki badań doświadczalnych i symulacji numerycznych procesu formowania elementów cienkościennych z wykorzystaniem wiązki laserowej i obciążenia mechanicznego. Na podstawie założeń zaprojektowano i wykonano stanowisko do gięcia cienkościennych rur i dyfuzorów stożkowych stosowanych w budowie silników lotniczych. Metoda i stanowisko kształtowania, przetestowane w warunkach laboratoryjnych, a także wyniki analizy numerycznej procesu pokazują nowe możliwości formowania elementów cienkościennych.
EN
The paper presents assumptions and preliminary results of experimental investigations and numerical simulations of forming thin-walled elements using laser beam and mechanical load. An experimental stand, dedicated for bending thin-walled tubes and conical diffusers, which are used in aircraft engines, has been designed and built. The method and stand, which were tested in laboratory conditions, together with numerical analysis results show new possibilities of forming thin-walled elements.
PL
W ostatnich latach badane są procesy kształtowania plastycznego z wykorzystaniem lokalnego nagrzewania laserowego. Nagrzewanie ma na celu umożliwienie lub ułatwienie obróbki plastycznej materiałów, które wykazują niekorzystne właściwości, jak: kruchość, silne efekty umocnienia czy powrotnego odkształcenia sprężystego. Zaprezentowane badania dotyczą hybrydowego termo-mechanicznego kształtowania plastycznego elementów cienkościennych z użyciem lokalnego nagrzewania materiału wiązką laserową. Docelowo prace są nakierowane na formowanie elementów ze stopów wykorzystywanych w przemyśle lotniczym takich, jak nadstopy niklu Inconel 625, Inconel 718, a także wysokostopowe stale martenzytyczne AISI 410 i AISI 325. Wstępne badania przeprowadzono z użyciem stali nierdzewnej X5CrNi18-10. Prace eksperymentalne i symulacje numeryczne objęły zachowanie się płaskowników o grubości 1 mm, poddanych działaniu obciążenia mechanicznego w układzie wysięgnikowym i nagrzewanych wiązką lasera CO2, przemieszczaną od swobodnego końca próbki do miejsca jej zamocowania. Doświadczalnie wykazano możliwość stosunkowo łatwego uzyskiwania dużych deformacji giętnych dzięki zastosowaniu nagrzewania laserowego. Zweryfikowane eksperymentalnie symulacje numeryczne, które wykonano metodą elementów skończonych, ujawniły intensywne płynięcie plastyczne warstwy ogrzewanej wiązką laserową. Towarzyszyło temu przemieszczanie się osi obojętnej przekroju. W kolejnym etapie badane było gięcie rur cienkościennych na specjalnie skonstruowanym stanowisku. Umożliwia ono kontrolowane wprowadzanie obciążenia mechanicznego, ogrzewanie materiału ruchomą wiązką laserową i wymuszanie zadanej deformacji zgodnie ze schematem kinematycznym urządzenia.
EN
Forming processes assisted by localised laser heating are studied in recent years. Heating is used to make it possible or facilitate forming of materials, which exhibit such adverse properties as: brittleness, effects of high work-hardening or a high elastic spring-back. The hereby presented investigations concern the hybrid thermo-mechanical forming of thin-walled parts using local heating of the material by the laser beam. The research is aimed at forming of parts from materials used in the aviation industry, such as the nickel-base super-alloys Inconel 625, Inconel 718, and also martensitic super-alloys AISI 410 and AISI 325. Preliminary investigations are conducted using X5CrNil8-10 (1.4301) stainless steel. Experimental study and numerical simulations cover the behaviour of thin beams 1 mm thick, subjected to mechanical load in the cantilever arrangement and heated by the CO2 laser beam moving from the free end of the sample towards its fixture. The possibility of obtaining large bending deformations relatively easily due to the application of laser beam is demonstrated experimentally. Experimentally verified finite element numerical simulations show the intense plastic flow of the material layer heated by the laser beam. It is accompanied by a shift of the cross-section neutral axis of the beam. Bending of thin-walled tubes in a specially designed device is studied in the next step. It allows introducing mechanical loading in a controlled manner, heating the material by a moving laser beam and forcing the required deformation according to the kinematic scheme of the device.
EN
In this paper, the authors presented the research on laser formed construction bars made of C20 steel on the example of the T-shape. The CO2 TRUMPF TruFlow 6000 laser was used in the research. The influence of the laser treatment parameters (the power and speed of the heat source) on the volume of the bend angle, structure and properties of the elements (hardness and tensile strength) was examined. On the basis of the results obtained from the conducted experiments, the authors suggested a way of selecting treatment parameters so that the element should meet the strength assumptions at the allowable time of its implementation.
PL
W niniejszym artykule autorzy przedstawili wpływ temperatury wyżarzania na strukturę elementu ze stali S355, który uprzednio został poddany formowaniu laserowemu. Ponadto porównano wpływ tej temperatury na deformację elementów po formowaniu laserowym i mechanicznym.
EN
Affect of annealing temperature on the structure S355 steel elements, which previously has been laser formed, is presented in this paper. Affect of the temperature on the deformation both laser and mechanical formed elements is presented as well and compared each other.
PL
Spawanie precyzyjne cienkościennych rur aluminiowych jest operacją ciężką do wykonania tradycyjnymi metodami z uwagi na niską temperaturę topnienia stopów tego pierwiastka. Proces musi być precyzyjnie kontrolowany. Autorzy niniejszego artykułu zbadali możliwość spawania cienkościennych rur aluminiowych przy użyciu lasera CO2. Badania obejmowały dobór parametrów procesu, takich jak: moc wiązki i prędkość przemieszczania źródła ciepła. Efekty spawania laserowego zostały zaprezentowane w tym artykule. W dalszej części prac autorzy zamierzają zbadać zmiany w strukturze spoiny elementu oraz wpływ procesu na właściwości materiałowe obrabianych elementów.
PL
Metody termicznego formowania należą do bezkontaktowych metod zmian kształtu elementów. Mechanizmem napędowym procesu jest rozszerzalność termiczna - naturalne zjawisko zachodzące dla wszystkich materiałów. Formowanie termiczne pozwala na naprawę uszkodzonych obiektów mostowych bez konieczności ich demontażu co znacznie skraca czas naprawy i pozwalana na szybsze oddanie takich obiektów do użytku. Czas oddania obiektu odgrywa kluczową kwestię w sensie logistycznym, ponieważ wpływa na poprawienie przepustowości istniejącej infrastruktury drogowej oraz kolejowej z jak najkrótszym wyłączeniem jej z ruchu. Przekłada się to na lepsze planowanie tras przejazdu, z jak najmniejszymi opóźnieniami spowodowanymi przez objazdy, które mogą być konsekwencją zamknięcia drogi na czas naprawy, bądź też opóźnieniami spowodowanymi znacznym zmniejszenie przepustowości uszkodzonego odcinka drogowego. Naprawa niedużych uszkodzeń ma ponadto istotny wpływ na bezpieczeństwo w transporcie, wynikające z dopuszczenia obiektu do ruchu z pełnym obciążeniem ruchem. W niniejszym artykule autor podał przykłady możliwych uszkodzeń oraz zaprezentował sposoby formowania termicznego elementów konstrukcji mostowych, które ulegają uszkodzeniu w trakcie eksploatacji, na skutek impaktu z poruszającymi się pojazdami oraz na skutek działania skrajnych warunków atmosferycznych. Ponadto autor przedstawił model analityczny pozwalający na przewidywanie kierunku deformacji oraz zaprezentował wyniki badań eksperymentalnych nad formowaniem termicznym.
EN
Thermal forming methods are non contact shape change methods of various elements. The methodology behind this process is formed by thermal expansion - a natural phenomenon occurring for all materials. Thermoforming allows repairing damaged bridges without necessity to dismantle their structures. This method reduces repairing time. Putting construction of a bridge to public use is a key issue in terms of logistics as this can substantially improve traffic flow on existing road or railway infrastructure with minimum disturbance to public users. This shifts into better route planning, minimizes possible delays caused by future detours incurred by road closures caused by repairs or reduction of overall road capacity. Small defects repair has also a significant influence on transport safety, arising from the approving to use of the object with full load traffic. Author of this paper shows examples of possible bridge damages and presents ways to thermoforming structural components of bridges which were damaged during the exploitation, due to the impact from moving vehicles, and as a result of extreme weather conditions. Author presents analytical model which give us opportunity to predict the direction of deformation. The results of experimental studies on thermal forming will be presented in this paper as well.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.