Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 1

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
Stock market price prediction models have remained a prominent challenge for the investors owing to their volatile nature. The impact of macroeconomic events such as news headlines is studied here using a standard dataset with closing stock price rates for a chosen period by performing sentiment analysis using a Random Forest classifier. A Bi-LSTM time-series forecasting model is constructed to predict the stock prices by using the polarity of the news headlines. It is observed that Random Forest Classifiers predict the polarity of news articles with an accuracy of 84.92%.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.