Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 63

Liczba wyników na stronie
first rewind previous Strona / 4 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 4 next fast forward last
EN
Heat treatment processes, due to qualitative requirements for the cast machinery components and restrictions on energy consumption resulting on the one hand from environmental concerns, and on the other hand from a requirements coming from minimization of manufacturing costs, are resulting in searching after a technologies enabling obtainment of satisfactory results, in form of improved mechanical properties mainly, while minimizing (limiting) parameters of successive operations of the heat treatment. Heat treatment of the T6 type presented in this paper consists in operations of heating of investigated alloys to suitably selected temperature (range of this temperature was evaluated on the base of the ATD method), holding at such temperature for a short time, and next rapid cooling in water (20ooC) followed by artificial ageing, could be such technology in term s of above mentioned understanding of this issue. Performed T6 heat treatment with limited parameters of solutioning operation resulted in visible increase in tensile strength Rm of AlSi7Mg, AlSi7Cu3Mg and AlSi9Cu3(Fe) alloys.
EN
Mechanical properties of aluminum-silicon alloys are defined by condition of alloying components in the structure, i.e. plastic metallic matrix created from solid solution &alpha on the basis of Al, as well as hard and brittle precipitations of silicon. Size and distribution of silicon crystals are the main factors having effect on field of practical applications of such alloys. Registration of crystallization processes of the alloys on stage of their preparation is directly connected with practical implementation of crystallization theory to controlling technological processes, enabling obtainment of suitable structure of the material and determining its usage for specific requirements. An attempt to evaluate correlation between values of characteristic points laying on crystallization curves and recorded with use of developed by the author TVDA method (commonly denominated as ATND method) is presented in the paper together with assessment of hardness of tested alloy. Basing on characteristic points from the TVDA method, hardness of EN AC-AlSi9Mg alloy modified with strontium has been described in the paper in a significant way by the first order polynomial.
PL
Struktura i właściwości mechaniczne siluminów są w dużym stopniu zależne od szybkości chłodzenia, składu oraz operacji modyfikacji i obróbki cieplnej. W artykule opisano badania doświadczalne dotyczące zastosowania metody ATND (analiza termiczno-napięciowo- różnicowa) oraz analizy regresji do oceny jakości stopu AlSi12Cu2(Fe) modyfikowanego strontem na etapie jego przygotowania. Uzyskane zależności pomiędzy wartościami temperatury i napięcia w punktach charakterystycznych krzywych metody ATND umożliwiają predykcję właściwości mechanicznych (Rsp0,02, Rm, A5) badanego stopu. Pozwala to już na etapie przygotowania stopu ocenić jego właściwości mechaniczne bez konieczności prowadzenia pracochłonnych badań i wprowadzić ewentualne działania korygujące, mające na celu poprawę jego właściwości.
EN
Structure and mechanical properties of silumins are highly dependent on cooling rate, composition and operations of modification and heat treatment. The present article describes experimental research concerning use of the ATND method (thermal-voltage-derivative analysis) and regression analysis to assessment of quality of AlSi12Cu2(Fe) alloy modified with strontium at the stage of its preparation. Obtained relationships between values of temperature and voltage in characteristic points on curves from ATND method enable prediction of mechanical properties (R0,02, Rm, A5) of the investigated alloy. This allows, as early as in preparation stage of the alloy, to evaluate its mechanical properties without need of labour consuming tests, and to introduce possible corrective measures aimed at improvement of its properties.
EN
The present work discusses results of preliminary tests concerning the technology of continuous dosage of sodium to a metallic bath from the aspect of modification of EN AC-44200 alloy, through the use of a multiple compound (salt) of sodium. The technology consists in continuous electrolysis of sodium salts occurring directly in a crucible with liquid alloy. As a measure of the degree of alloy modification over the course of testing, the ultimate tensile strength (UTS or Rm) and analysis of microstructure are taken, which confirm the obtained effects of the modification on the investigated alloy. Assurance of stable parameters during the process of continuous modification with sodium, taking into consideration the fact of complex physical-chemical phenomena, requires additional tests aimed at their optimization and determination of a possibility of implementation of such technology in metallurgical processes.
EN
Heat treatment of a casting elements poured from silumins belongs to technological processes aimed mainly at change of their mechanical properties in solid state, inducing predetermined structural changes, which are based on precipitation processes (structural strengthening of the material), being a derivative of temperature and duration of solutioning and ageing operations. The subject-matter of this paper is the issue concerning implementation of a heat treatment process, basing on selection of dispersion hardening parameters to assure improvement of technological quality in terms of mechanical properties of a clamping element of energy network suspension, poured from hypoeutectic silumin of the LM25 brand; performed on the basis of experimental research program with use of the ATD method, serving to determination of temperature range of solutioning and ageing treatments. The heat treatment performed in laboratory conditions on a component of energy network suspension has enabled increase of the tensile strength Rm and the hardness HB with about 60-70% comparing to the casting without the heat treatment, when the casting was solutioned at temperature 520 oC for 1 hour and aged at temperature 165 oC during 3 hours.
EN
Very well-known advantages of aluminum alloys, such as low mass, good mechanical properties, corrosion resistance, machining-ability, high recycling potential and low cost are considered as a driving force for their development, i.e. implementation in new applications as early as in stage of structural design, as well as in development of new technological solutions. Mechanical and technological properties of the castings made from the 3xx.x group of alloys depend mainly on correctly performed processes of melting and casting, design of a mould and cast element, and a possible heat treatment. The subject-matter of this paper is elaboration of a diagrams and dependencies between parameters of dispersion hardening (temperatures and times of solutioning and ageing treatments) and mechanical properties obtained after heat treatment of the 356.0 (EN AC AlSi7Mg) alloy, enabling full control of dispersion hardening process to programming and obtaining a certain technological quality of the alloy in terms of its mechanical properties after performed heat treatments. Obtained results of the investigations have enabled obtainment of a dependencies depicting effect of parameters of the solutioning and ageing treatments on the mechanical properties (Rm, A5 and KC impact strength) of the investigated alloy. Spatial diagrams elaborated on the basis of these dependencies enable us to determine tendencies of changes of the mechanical properties of the 356.0 alloy in complete analyzed range of temperature and duration of the solutioning and ageing operations.
EN
Automation of machining operations, being result of mass volume production of components, imposes more restrictive requirements concerning mechanical properties of starting materials, inclusive of machinability mainly. In stage of preparation of material, the machinability is influenced by such factors as chemical composition, structure, mechanical properties, plastic working and heat treatment, as well as a factors present during machining operations, as machining type, cutting parameters, material and geometry of cutting tools, stiffness of the system: workpiece – machine tool – fixture and cutting tool. In the paper are presented investigations concerning machinability of the EN AC-AlSi9Cu3(Fe) silumin put to refining, modification and heat treatment. As the parameter to describe starting condition of the alloy was used its tensile strength Rm. Measurement of the machining properties of the investigated alloy was performed using a reboring method with measurement of cutting force, cutting torque and cutting power. It has been determined an effect of the starting condition of the alloy on its machining properties in terms of the cutting power, being indication of machinability of the investigated alloy. The best machining properties (minimal cutting power - Pc=48,3W) were obtained for the refined alloy, without heat treatment, for which the tensile strength Rm=250 MPa. The worst machinability (maximal cutting power Pc=89,0W) was obtained for the alloy after refining, solutioning at temperature 510 oC for 1,5 hour and aged for 5 hours at temperature 175 oC. A further investigations should be connected with selection of optimal parameters of solutioning and ageing treatments, and with their effect on the starting condition of the alloy in terms of improvement of both mechanical properties of the alloy and its machining properties, taking into consideration obtained surface roughness.
EN
Dispersion hardening, as the main heat treatment of silumins having additions of copper and magnesium, results in considerable increase of tensile strength and hardness, with simultaneous decrease of ductility of the alloy. In the paper is presented an attempt of introduction of heat treatment operation consisting in homogenizing treatment prior operation of the dispersion hardening, to minimize negative effects of the T6 heat treatment on plastic properties of hypereutectoidal AlSi17CuNiMg alloy. Tests of the mechanical properties were performed on a test pieces poured in standardized metal moulds. Parameters of different variants of the heat treatment, i.e. temperature and time of soaking for individual operations were selected basing on the ATD (Thermal Derivation Analysis) diagram and analysis of literature. The homogenizing treatment significantly improves ductility of the alloy, resulting in a threefold increase of the elongation and more than fourfold increase of the impact strength in comparison with initial state of the alloy. Moreover, the hardness and the tensile strength (Rm) of the alloy decrease considerably. On the other hand, combination of the homogenizing and dispersion hardening enables increase of elongation with about 40%, and increase of the impact strength with about 25%, comparing with these values after the T6 treatment, maintaining high hardness and slight increase of the tensile strength, comparing with the alloy after the dispersion hardening.
EN
The paper presents test results concerning an effect of the heat treatment on microstructure and mechanical properties of eutectic EN AC-AlSi12CuNiMg (EN AC-48000) alloy according to the EN 1706:2010 (tensile strength – Rm, hardness – HB 10/1000/30) modified with strontium. Solution heat treatment and ageing treatment temperature ranges were selected on base of heating (melting) curves recorded with use of the ATD method. Temperatures of the solution heat treatment were 500, 520, and 535°C ±5°C, while the solution time ranged from 0.5 to 3 h (0.5; 1.5 and 3 h). Temperature of the solution heat treatment amounted to 180, 235 and 310°C, while the ageing time ranged from 2 to 8 h (2, 5 and 8 h). Obtained results have enabled determination of optimal parameters of the T6 heat treatment in aspect of improvement of tensile strength Rm and hardness HB of the alloy, with reduced time of individual treatments and determination of mathematical relationships enabling prediction of these mechanical properties.
PL
W pracy przedstawiono wyniki badań dotyczące wpływu obróbki cieplnej na właściwości mechaniczne (wytrzymałość na rozciąganie – Rm, twardość – HB 10/1000/30) i mikrostrukturę eutektycznego stopu EN AC-AlSi12CuNiMg (EN AC-48000) zgodnie z PN-EN 1706:2011 modyfikowanego strontem. Zakresy temperatur zabiegów przesycania i starzenia zostały dobrane w oparciu o krzywe nagrzewania (topienia) zarejestrowane metodą ATD. Temperatury przesycania wynosiły 500, 520 i 535°C ± 5°C, a czas przesycania mieścił się w zakresie od 0.5 do 3 godzin (0.5; 1.5 i 3 h). Temperatura starzenia wynosiła 180, 235 i 310°C. Czas przesycania mieścił się w zakresie od 2 do 8 godzin (2, 5 i 8 h). Uzyskane wyniki pozwoliły na określenie optymalnych parametrów obróbki cieplnej T6 w aspekcie poprawy wytrzymałości na rozciąganie Rm i twardości HB stopu, przy ograniczeniu czasu poszczególnych zabiegów oraz wyznaczenie zależności matematycznych umożliwiających predykcje tych właściwości mechanicznych.
EN
Growing market demand, more and more efficient and cleaner vehicles create a challenge for automotive industry. Properties of aluminum, such as: high strength stiffness to weight ratio, high fluidity and castability, easy machinability and weldability and good corrosion resistance make them ideal candidate to replacement of a heavier materials used in vehicles, and the same, have direct effect on fuel consumption. Comparing to steel, titanium or carbon fibers, aluminum alloys are characterized by low impact strength, which can be improved by a heat treatment. In this study one investigated the effect of the heat treatment (natural ageing) on the EN AC-AlSi9Cu3(Fe) alloy modified with strontium. Solution heat treatment temperature’s ranges were selected on the base of heating (melting) curves recorded with use of the thermal derivative analysis (ATD) method. Temperatures of the solution heat treatment were 495°C, 510°C, and 525°C ± 5°C, while the solutioning time ranged from 15 to 105 minutes (15; 60 and 105 min.). Time of the ageing amounted to 1, 3 and 7 days. To determine impact strength of the alloy after performed heat treatment one implemented simplified Charpy test. Maximal values of the impact strength (9,6 J/cm2) were obtained for solutioning temperature 510°C and solutioning time 15 minutes, after seven days of ageing. Obtained results enabled determination of solutioning parameters, which allow obtainment of increased impact strength of the investigation alloy for the T4 heat treatment.
EN
The Al-Si-Cu alloys with content of the copper from 2 to 4 percent, after solutioning and artificial ageing treatments (T6 heat treatment), feature high strength and very high hardness, however their elongation is considerably reduced. Maintaining value of elongation on the level of initial alloy is possible due to homogenizing treatment performed prior the T6 treatment. Performed strength tests of the initial alloy and the alloy after individual types of the heat treatment enable comparison of obtained results and assessment of usability of the investigated alloy to production of a castings. Test pieces to the strength tests were poured in standardized metal moulds. Parameters of the heat treatment, temperature and duration of heating were established on base of the literature and the ATD diagram performed for the investigated alloy. Investigated EN AC-AlSi6Cu4 alloy after homogenizing treatment becomes plastic, its elongation A5 and its impact strength KC increase nearly three times, with slight decrease of the tensile strength Rm. Dispersion hardening in connection with the homogenizing treatment results in increase of the tensile strength Rm with 68%, hardness and impact strength with 40% with elongation at level of the alloy without heat treatment. Making suitable selection of various types of the heat treatment it is possible, depending on needs, to control mechanical properties of the alloy.
EN
Mechanical and technological properties of castings made from 3xx.x alloys depend mainly on properly performed process of melting and casting, structure of a casting and mould, as well as possible heat treatment. Precipitation processes occurring during the heat treatment of the silumins containing additives of Cu and/or Mg have effect on improvement of mechanical properties of the material, while choice of parameters of solutioning and ageing treatments belongs to objectives of research work performed by a number of authors. Shortened heat treatment, which is presented in the paper assures suitable mechanical properties (Rm), and simultaneously doesn’t cause any increase of production costs of a given component due to long lasting operations of the solutioning and ageing. Results of the research concern effects of the solutioning and ageing parameters on the Rm tensile strength presented in form of the second degree polynomial and illustrated in spatial diagrams. Performed shortened heat treatment results in considerable increase of the Rm tensile strength of the 320.0 alloy as early as after 1 hour of the solutioning and 2 hours of the ageing performed in suitable.
EN
Improvement of Al-Si alloys properties in scope of classic method is connected with change of Si precipitations morphology through: using modification of the alloy, maintaining suitable temperature of overheating and pouring process, as well as perfection of heat treatment methods. Growing requirements of the market make it necessary to search after such procedures, which would quickly deliver positive results with simultaneous consideration of economic aspects. Presented in the paper shortened heat treatment with soaking of the alloy at temperature near temperature of solidus could be assumed as the method in the above mentioned understanding of the problem. Such treatment consists in soaking of the alloy to temperature of solutioning, keeping in such temperature, and next, quick quenching in water (20°C) followed by artificial ageing. Temperature ranges of solutioning and ageing treatments implemented in the adopted testing plan were based on analysis of recorded curves from the ATD method. Obtained results relate to dependencies and spatial diagrams describing effect of parameters of the solutioning and ageing treatments on HB hardness of the investigated alloy and change of its microstructure. Performed shortened heat treatment results in precipitation hardening of the investigated 320.0 alloy, what according to expectations produces increased hardness of the material.
EN
Among alloys of non-ferrous metals, aluminum alloys have found the widest application in foundry industry as a competitive alternative of ferroalloys. One from methods to improve mechanical properties of aluminum alloys is a heat treatment consisting in heating a material to solutioning temperature, keeping the material in such temperature, and subsequent rapid cooling and natural or artificial ageing. In the paper are presented test results concerning effects of the T6 heat treatment, comprising solutioning and artificial ageing, on hardness and impact strength of the AlZn10Si7MgCu alloy poured into metal moulds. Temperature ranges of solutioning and ageing treatments were selected on the base of recorded curves from the ATD method. Basing on three-stage plan of the investigations with four variables one determined range of the heat treatment parameters, what is a condition of obtainment of required HB hardness of the investigated alloy. Further investigations shall concern correction of obtained results with respect to the HB hardness and impact strength, obtained for selected castings of machinery components.
EN
Application of the silumins expands together with nowadays tendency to reduction of design structures mass. Technological and mechanical properties of Al-Si casting alloys depend mainly from structure of eutectic mixture, which is modified in result of introduction of micro alloying elements to liquid alloy, and that is why proper use of knowledge on crystallization to control of crystallization kinetics of produced alloys to optimize obtained structure is a significant factor leading to improvement of quality of the castings. In the paper one depicts use of the ATND method (thermal-voltage-derivative analysis) and regression analysis to assessment of quality of the EN AC-43300 alloy modified with strontium on stage of its preparation, in aspect of obtained mechanical properties (R0,02, R0,2, Rm, A5). Obtained dependencies enable prediction of mechanical properties of the investigated alloy, basing on values of characteristic points from the ATND method.
EN
Majority of combustion engines is produced (poured) from Al-Si alloys with low thermal expansion coefficient, so called piston silumins. Hypereutectic alloys normally contain coarse, primary angular Si particles together with eutectic Si phase. The structure and mechanical properties of these alloys are highly dependent upon cooling rate, composition, modification and heat-treatment operations. In the paper one depicts use of the ATND method (thermal-voltage-derivative analysis) and regression analysis to assessment of quality of the AlSi21CuNi alloy modified with Cu-P on stage of its preparation, in aspect of obtained mechanical properties (R0,02, Rm, A5, HB). Obtained dependencies enable prediction of mechanical properties of the investigated alloy in laboratory conditions, using values of characteristic points from curves of the ATND method.
EN
In the paper is presented an attempt of assessment of melting and modification effect on Rm tensile strength of Al-Si alloys poured into metallic moulds. Investigated alloys underwent refining and modification with AlSr10 master alloy. Run of the crystallization process was presented with the help of solidification curves, making use of thermal-voltage-derivative analysis (ATND). Obtained results comprise registered curves of solidification, strength tests, microstructure of the alloy and regression analysis. On base of performed regression analysis one obtained a dependencies enabling evaluation of Rm tensile strength of Al-Si alloys as early as on stage of their preparation (melting).
PL
W pracy przedstawiono próbę oceny wpływu warunków procesu topienia i modyfikacji na wytrzymałość na rozciąganie Rm stopów Al-Si odlewanych do form metalowych. Stopy Al-Si poddano rafinacji i modyfikacji zaprawą AlSr10. Przebieg procesu krystalizacji charakteryzowano za pomocą krzywych krystalizacji. Stosowano metodę analizy termiczno-napięciowo-derywacyjnej (ATND). Wykonano próbę statyczną rozciągania oraz badania mikroskopowe wytworzonych stopów Al-Si. Analiza regresji stanowiła podstawę do uzyskania zależności pozwalającej określić prognozowaną wytrzymałość na rozciąganie Rm stopów Al-Si w procesie topienia i krystalizacji.
EN
Improvement of properties of silumins in scope of classic methods is connected with changes in morphology of silicon precipitation through: process of modification of alloy, maintaining a suitable temperature of overheating and pouring into moulds, as well as perfection of heat treatment processes. Obtained structure of casting have a direct influence on mechanical and technological properties of machinery parts, and therefore, usage of knowledge on crystallization to control of crystallization’s kinetics of castings in order to optimize obtained structure and introduction of modern methods of heat treatment, enabling considerable improvement of mechanical and technological properties, becomes an important factor. Dispersion hardening with soaking of alloy near temperature of solidus, consisting in heating of poured specimens to temperature of solutioning, keeping in such temperature, cooling down in cold water (20oC), and next operation of artificial ageing have effect on change of tensile strength Rm of a selected hypo-eutectoid silumins. Selection of suitable parameters of dispersion hardening is condition of obtainment of positive results in terms of improvement of tensile strength Rm and has effect on its economic aspects.
EN
To the main advantages of magnesium alloys belongs their low density, and just because of such property the alloys are used in aviation and rocket structures, and in all other applications, where mass of products have significant importance for conditions of their operation. To additional advantages of the magnesium alloys belongs good corrosion resistance, par with or even surpassing aluminum alloys. Magnesium is the lightest of all the engineering metals, having a density of 1.74 g/cm3. It is 35% lighter than aluminum (2.7 g/cm3) and over four times lighter than steel (7.86 g/cm3). The Mg-Li alloys belong to a light-weight metallic structural materials having mass density of 1.35-1.65 g/cm3, what means they are two times lighter than aluminum alloys. Such value of mass density means that density of these alloys is comparable with density of plastics used as structural materials, and therefore Mg-Li alloys belong to the lightest of all metal alloys. In the present paper are discussed melting and crystallization processes of ultra-light weight MgLi12,5 alloys recorded with use of ATND methods. Investigated magnesium alloy was produced in Krakow Foundry Research Institute on experimental stand to melting and casting of ultra-light weight alloys. Obtained test results in form of recorded curves from ATND methods have enabled determination of characteristic temperatures of phase transitions of the investigated alloy.
EN
The most important parameters which predetermine mechanical properties of a material in aspects of suitability for castings to machinery components are: tensile strength (Rm), elongation (A5, hardness (HB) and impact strength (KCV). Heat treatment of aluminum alloys is performed to increase mechanical properties of the alloys mainly. The paper comprises a testing work concerning effect of heat treatment process consisting of solution heat treatment and natural ageing on mechanical properties and structure of AlZn10Si7MgCu alloy moulded in metal moulds. Investigated alloy was melted in an electric resistance furnace. Run of crystallization was presented with use of thermal-derivative method (ATD). This method was also implemented to determination of heat treatment temperature ranges of the alloy. Performed investigations have enabled determination of heat treatment parameters' range, which conditions suitable mechanical properties of the investigated alloy. Further investigations will be connected with determination of optimal parameters of T6 heat treatment of the investigated alloy and their effect on change of structure and mechanical/technological properties of the investigated alloy.
first rewind previous Strona / 4 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.