Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 15

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
In this paper, we propose a robust nonlinear control design concept based on a coefficient diagram method and backstepping control, combined with a nonlinear observer for the magnetic levitation system to achieve precise position control in the existence of external disturbance, parameters mismatch with considerable variations and sensor noise in the case, where the full system states are supposed to be unavailable. The observer converges exponentially and leads to good estimate as well as a good track of the steel ball position with the reference trajectory. A simulation results are provided to show the excellent performance of the designed controller.
EN
This modest paper presents a study on the energy quality produced by a hybrid system consisting of a Photovoltaic (PV) power source connected to a battery. A three-level inverter was used in the system studied for the purpose of improving the quality of energy injected into the grid and decreasing the Total Harmonic Distortion (THD). A Maximum Power Point Tracking (MPPT) algorithm based on a Fuzzy Logic Controller (FLC) is used for the purpose of ensuring optimal production of photovoltaic energy. In addition, another FLC controller is used to ensure DC bus stabilization. The considered system was implemented in the Matlab/Simpower environment. The results show the effectiveness of the proposed inverter at three levels in improving the quality of energy injected from the system into the grid.
EN
Fault input channels represent a major challenge for observer design for fault estimation. Most works in this field assume that faults enter in such a way that the transfer functions between these faults and a number of measured outputs are strictly positive real (SPR), that is, the observer matching condition is satisfied. This paper presents a systematic approach to adaptive observer design for joint estimation of the state and faults when the SPR requirement is not verified. The proposed method deals with a class of Lipschitz nonlinear systems subjected to piecewise constant multiplicative faults. The novelty of the proposed approach is that it uses a rank condition similar to the observer matching condition to construct the adaptation law used to obtain fault estimates. The problem of finding the adaptive observer matrices is formulated as a Linear Matrix Inequality (LMI) optimization problem. The proposed scheme is tested on the nonlinear model of a single link flexible joint robot system.
EN
This paper presents the synthesis of an adaptive observer which is used for the improvement of the direct torque control of induction motor drives. The observer detects stator flux components in two-phase stationary reference frame, rotor speed and stator resistance by measure of the stator terminal voltages and currents. The observer is adapted using a simple algorithm which does not imply a high computational load. Stability analysis based on Lyapunov theory is performed in order to guarantee the closed loop stability. Simulation tests under load disturbance and stator resistance variation are provided to evaluate the consistency and performance of the proposed control technique in the low and high speeds.
EN
This paper describes a fault-tolerant controller (FTC) of induction motor (IM) with inter-turn short circuit in stator phase winding. The fault-tolerant controller is based on the indirect rotor field oriented control (IRFOC) and an observer to estimate the motor states, the amount of turns involved in short circuit and the current in the short circuit. The proposed fault controller switches between the control of the two components of measured stator current in the synchronously rotating reference frame and the control of the two components of estimated current in the case of faulty condition when the estimated current in the short circuit is not destructive of motor winding. This technique is used to eliminate the speed and the rotor flux harmonics and to assure the decoupling between the rotor flux and torque controls. The results of the simulation for controlling the speed and rotor flux of the IM demonstrate the applicability of the proposed FTC.
EN
Direct torque control (DTC) allows for very high quality torque control without a need for current controllers tuning or using coordinate transformation. However, barge torque ripples arise as well as inconstant inverter switching frequency due to the hysteresis of comparators. This paper present a backstepping/DTC control based on the space vector modulation (SVPWM) for double star synchronous machine (DSSM) to reduce the torque, flux, current and speed pulsations during steady state. By the coordinate transformation the DSSM models are presented in view of control. Then a conventional DTC is developed to get a decoupled system and a PI controller is designed to control the speed. To improve the static and dynamic control performance of the DSSM, the speed controller is designed using a backstepping/DTC procedure in conjunction with SVPWM. Simulation results with the conventional DTC and proposed backstepping/DTC are presented and compared. Results show the effectiveness and the robustness of the approach proposed.
7
Content available remote On hybrid observability and sliding mode observer in three cells converter
EN
Power converters by their nature present hybrid behavior since they contains switched circuits. Such circuits can be described by a set of discrete states with associated continuous dynamics. In this paper a new hybrid model for a 3-cells power converter is proposed. This hybrid model incorporates both the continuous and discrete states allowing better understanding of the system operating modes and properties. Of particular interests the new concept of hybrid Z(TN) observability is used to deal with the observability of the capacitors voltages and a discussion on the achievable observation dynamics is given. A sliding mode observer strategy is derived to estimate the flying voltages of the converter. Furthermore, it is derived that under some specific control sequence, the observation errors are asymptotically stable. Finally, experimental results are presented in order to illustrate the performance of the proposed approach.
EN
This work deals with modeling and fault detection and identification for robot manipulator. We have used for a dynamical system a hybrid approach. The model is decomposed into two parts: first, a certain part modeled using classical analytical theory and it is preferable to be linear. Second, an uncertain part representing the nonlinearities neglected in the first part, which is modeled using neuro-fuzzy modeling. Both analytical redundancy and neuro-fuzzy modeling are used to improve robustness. The analytical redundancy is used to generate residuals for the fault detection and location procedure. The neuro-fuzzy modeling is used to model modeling errors and faults, which allows performing the robustness and the sensitivity. Thanks to neuro-fuzzy modeling the errors of modeling are compensated and the faults are well identified as it is shown through the results of simulation.
EN
Based on the Euler angles parametrization, a new method for the attitude control of a vertical take-off and landing (VTOL) quadrotor aircraft is proposed. It relies on the combination of the backstepping technique and a nonlinear robust PI controller. The integral action gain is nonlinear and based on a switching function that allows a robust behavior for the overall control law. One of the strengths of the proposed approach is its robustness with respect to plant parameters uncertainties. The proposed approach has been tested in simulation and in real time and shows good performance.
10
Content available remote Optimization of fuzzy PID controllers using Q-learning algorithm
EN
In this article, we first chose the design settings of the fuzzy PID controllers (FPIDC) so that the FPIDCs mimic the classical PID controllers. The advantage of these controllers is the combination of the simplicity of the classical PID controllers and the interpretability of fuzzy controllers which makes the task of parameters tuning easier. Secondly, we present a method for optimizing the closed-loop system consisting of a FPIDC and an unknown plant using the Q-learning algorithm (QLA). Specifically, QLA minimizes a cost function which quantifies the performance of FPIDC. Without loss of generality the square error sum cost function is used. The QLA, which is a nonmodel-based method, iteratively search of the best parameters so that the output of the cost function is less then satisfaction threshold. Finally, a simulation example is used to prove the effectiveness of the proposed method.
EN
The purpose of this paper is to describe the application of the Timoshenko beam theory (TBT) to the mathematical modelling of a planar one link flexible robot manipulator pinned at its actuated base and carrying a payload at its free end-point. The emphasis has been put on obtaining accurate and complete equations of motion that display the most relevant aspects of structural propenies inherent to the modelled lightweight flexible link. So, in addition to the classical effects of shearing and rotational inertia of the link cross-section, two imponant damping mechanisms: external viscous air damping and internal structural viscoelasticity effect (Kelvin-Voigt damping) have been included. Gravity, torsion, and longitudinal elongation have been neglected. Numerical simulations, performed to show the free vibrational behaviour of the modelled system, demonstrate the imponant effect of the carried payload on the amplitude and the frequency of vibrations.
12
Content available remote FPGA Neural Network implementation for real time control
EN
This paper describes an efficient implementation of neural multi-layer networks on FPGA fabric (Field Programmable Gate Array). A back-propagation algorithm was used for the training task while implementation and synthesis tools are centered on the ISE 6.3 of Xilinx with the targeted components being VirtexII and VirtexIIPro. A fixed point and a floating point number representation were used for encoding real numbers and for data processing, respectively. The realization of the activation function was carried out according to three methods, for which the results of simulation and synthesis are also presented. The implementation performances were tested using an approximation of some linear and non-linear functions. Of particular importance, two experimental evaluations involving the speed and the position control of a DC motor are given to demonstrate the features of the adopted methodology.
EN
This paper presents a new control design procedure for permanent magnet synchronous machine motion drive in the case of unknown load torque. The contol law is based on the combination of sliding mode, non linear proportional integral derivative regulators, and the backstepping approaches. More precisely, we determine the controllers imposing the current-position tracking in three recursive steps and by using appropriate sliding mode / PID gains that are non linear functions of the system state. Moreover, a comparative study between the proposed sliding mode PID/Backstepping approach and the feedback linearizing control is made by realistic simulation including load torque change, parametric variations and measurement noise. The results of current-position tracking show the effectiveness of the proposed method in presence of strong disturbances.
14
Content available remote General adaptive observer-based fuzzy control of uncertain nonaffine systems
EN
This paper focuses on the construction of an adaptive fuzzy output feedback control based on any adaptive fuzzy observer for a class of single-input-single-output SISO uncertain or ill-defined nonaffine nonlinear system. Indeed, the corrective term of the proposed observer involves a well defined design function which is shown to be satisfied by the commonly used high-gain based observers, namely for the usual high-gain observers and the sliding modes observers together with their implementable versions. The design of the underlying update law as well as the robust control term is based on an appropriate filtering of the output tracking error. This particularly allows to overcome yhe output observation error flitering or the necessity of the famous strictly positive real (SPR) condition.
EN
This paper presents a theory and an experimental evaluation of robust control algorithm for permanent magnet synchronous machine (PMSM) speed drive fed by voltage source inverter. A simple control model is first obtained by performing field orintation through a nominal linearizing stste feedback. Then, the robust control algorithm based on pole placement is applied to the PMSM in order to deal with plant uncertainties. The adopted method uses the notion of geometric stability and the multi-model approach in order to synthesis the state regulation by robust pole placement. To show the validity of our control approach. DSP based experimental results are presented. These results are very satisfactory and prove the feasibility of our control algorithm.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.