Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 5

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
1
Content available remote A Fabric-Based Integrated Sensor Glove System Recognizing Hand Gesture
EN
The research on wearable glove sensor system has been increasing over recent years because of the need for portability and comfort. This study presents a fabric-based integrated sensor glove system with five sensing zones. Five sensors are knitted by silver-plated nylon yarn and embedded into glove directly using intarsia technology. Various parameters including sensor elasticity, sizes of embedded sensor as well as glove are discussed, respectively. Further, selected or chosen integrated sensor glove is manufactured and tested for recognizing gestures. Results show that elasticity affects effective sensing range of knitted sensors, size has significant influence on sensors’ sensitivity, and appropriate glove size helps avoiding nonlinear sensing phenomenon. Finally, the glove system, by extracting feature data, can distinguish Chinese number gestures very well and has also the potential to recognize more hand gestures in the future.
EN
Because of softness and lightness, various flexible sensors have attracted extensive attention and been widely studied. Sensing mechanism of most wearable sensors is derived from an elastic substrate, such as fabric or polymer materials. Although the mechanical-electrical performance of several flexible sensors has been reported, including sensitivity, linearity hysteresis and repeatability, research on the effects of substrate elasticity on sensor capacity is scarce. In this paper, the impact of spandex content, washing and ironing processing on the elasticity of weft knitted sensors was investigated by the constant- extension test method. Afterwards, differences in sensing properties between diverse elastic sensors under single as well as repeated stretch were reported. The experimental results showed that spandex content does influence the elasticity of knitted fabric, which has a further great effect on sensing properties. A highly elastic sensor is capable of detecting large-scale human motions, while sensors with lower elasticity are opposite, which demonstrates that elastic sensors can be designed and chosen to meet the requirements of detecting and monitoring distinct human motions.
PL
Ze względu na swoją delikatność i lekkość czujniki elastyczne przyciągają uwagę i są często stosowane. Często opisywane jest działanie mechaniczno-elektryczne kilku elastycznych czujników, w tym czułość, histereza liniowości i powtarzalność, badania nad wpływem elastyczności podłoża na pojemność czujnika są dość rzadkie. W pracy zbadano wpływ zawartości spandex’u, obróbki prania i prasowania na sprężystość dzianin wątkowych metodą badania stałego rozciągania. Następnie odnotowano różnice we właściwościach wykrywania między różnymi czujnikami sprężystymi przy pojedynczym i powtarzanym rozciągnięciu. Wyniki eksperymentalne wykazały, że zawartość spandex’u wpływa na elastyczność dzianiny, co dodatkowo ma duży wpływ na właściwości wyczuwalne. Wyniki pokazały, że wysoce elastyczny czujnik jest w stanie lepiej wykrywać ruchy człowieka, niż czujniki o niższej elastyczności, co pokazuje, że czujniki elastyczne można zaprojektować i wybrać tak, aby spełniały wymagania wykrywania i monitorowania różnych ruchów człowieka.
EN
A novel and excellent composite film was fabricated by simply casting cassava silk fibroin (CSF), chitosan quaternary ammonium salt (HACC), and graphene oxide (GO) in an aqueous solution. Scanning electron microscope images showed that when GO was dispersed in the composite films, the surface of CSF-based composite film became rough, and a wrinkled GO structure could be found. When the content of GO was 0.8%, the film displayed a higher change with respect to the breaking strength and elongation, respectively, up to 97.69 ± 3.69 and 79.11 ± 1.48 MPa, keeping good thermal properties because of the incorporation of GO and HACC. Furthermore, the novel CSF/HACC/GO composite film demonstrates a lower degradation rate, implying the improvement of the resistance to the enzyme solution. Especially in the film with 0.8 wt% GO, the residual mass arrived at 64.35 ± 1.1% of the primary mass after 21 days compared with the CSF/HACC film. This would reclaim the application of silk-based composite films in the biomaterial field.
4
Content available remote Preparation of Polypyrrole/Silver Conductive Polyester Fabric by UV Exposure
EN
In this study, polypyrrole/silver (PPy/Ag) conductive polyester fabric was synthesized via an in-situ polymerization method under UV exposure, using silver nitrate (AgNO3) as an oxidizing agent in the presence of sodium dodecyl benzene sulfonate (SDBS) and polyvinylpyrrolidone (PVP). The effect of the preparation processes on the properties of the conductive fabric was studied experimentally, and the optimal preparation process of the conductive fabric was obtained. X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared (FTIR) showed the chemical structural properties of the PPy/Ag conductive polyester fabric. X-ray diffraction (XRD) confirmed the presence of silver nanoparticles in the prepared material. Furthermore, subsequent test results proved that the PPy/Ag conductive polyester fabric prepared by UV irradiation had good electrical conductivity and antibacterial property. The sheet resistance of the prepared conductive fabric was 61.54 Ω • sq−1.
EN
The lapping angle, which affects the style and quality of production, has been studied as a parameter of weft knitting. But the importance of the lapping angle has not been considered during the warp-knitting cycle. This paper shows that the lapping angle exists in the process of warp knitting and can be divided into horizontal and vertical lapping angles. Models for the lapping angles of closed and open loops were devised, and the lapping angles (horizontal and vertical lapping angles) of closed and open loops were calculated and analyzed. Furthermore, the paper seeks to investigate the factors that influence the lapping angle of tricot warp-knitted fabrics and summarize the rules. Moreover, the vertical lapping angle can affect the loop coverage. Results reveal that the decrease in number of underlaps and an increase in take-off density enables loops of the front guide bar to show on the face of the fabric. Moreover, it is also advantageous for an apparent front loop visibility when the front guide bar knits in open loop.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.