Let A denotes the space of all complex sequences such that an appropriate power series converges for |z|<1 and B denotes the space of all complex sequences such that an appropriate power series converges for |z|>1. In this paper we prove that A and B, provided with their normal topologies turn out to be a topo-logical (matrix) algebras. Also we show that when they are endowed with such topologies then the set of all the matrix mappings from A or B into any of these two spaces coincides with the set of all the continuous linear transformations. We also characterize all-non-zero multiplicative and continu-ous matrix mappings between those two algebras.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.