Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
The Upper Ziz basin located in the southeast of Morocco, has a total area of 4,351 km2. The surface water feeds El Hassan Addakhil dam, which insures water supply for the downstream cities of Errachidia, Rissani, Erfoud and others along the Ziz valley. This study aimed to evaluate the availability of water resources in this basin known by its arid climate and strong climatic changes. Several global hydrological models at different times were used to simulate the discharge at the outlet. The Statistical Downscaling Model (SDSM) method has been used to reduce the average rainfall and the temperature to predict future climate change related to various Representative Concentration Pathway (RCP) scenarios such as RCP 4.5 and RCP 8.5. The results of the hydrologic models are available, with an NSE of 0.8 for the monthly model during calibration and 0.77 at validation. Future precipitation shows an increasing trend in both scenarios. As for future mean temperature, it will recognize great seasonal variability, such as warming winter and spring and cooling summer and autumn. As a result, simulated future discharge will decrease by 26% under RCP 4.5 and by 24% under RCP 8.5 in the near future.
EN
Like most of the countries of the African continent and the MENA, Morocco has experienced alternating wet and dry periods for several decades and is still confronted with the effects of unstable climate change due to the specificities conferred by its geographical position and the diversity of its ecosystems. It is one of the countries most affected by desertification, with an arid and semi-arid climate covering more than 93% of its territory. Indeed, the Upper Moulouya watershed has been exposed to severe droughts several times in recent decades. The spatial and temporal distribution of drought episodes in this watershed is studied over a 91-year period between 1931 and 2022. In order to characterize and evaluate the severity and sustainability of drought in this watershed, four indices were used and applied in this study, as they have advantages in terms of statistical consistency and have the capacity to describe, through different time scales (short, medium and long) the impacts of the climatic drought in question. These are the Standardized Precipitation Index SPI, RDI, RI and DI. The annual rainfall series at the eight meteorological stations of the said watershed show irregularities and very marked spatial and temporal variability with a generally decreasing trend. The SPI calculation results obtained show a heterogeneous distribution of SPI values throughout the watershed area. The analysis of the graphical illustrations of this index allowed to highlight an important fluctuation of the dry and wet periods with a strong dominance and tendency to drought with the order of 51% in the stations of Midelt, and Ansegmir, 52% in the station of Zaida, 59% in the stations of Tabouazant, Barrage (Dam) Enjil and El Aouia, 58% in the station of Louggagh, 47% in the station of Anzar Oufounes. The analysis of the results of the of the drought indices RDI, RI and DI at the level of this watershed also made it possible to highlight the existence of numerous drought sequences alternating with other wet sequences and indicates a dominance of dry years, perfectly remarkable during the period 1976-93. The most important dry episode, in number of successive years, was recorded at the Ansegmir station from 1976-89 and the most important rainy episode was recorded at the Midelt station from 1966-76. The years of the 2015-2022 series show an overall persistent decrease in rainfall, thus allowing the installation of a severe drought episode. The trend in the entire watershed is a decrease in rainfall and the installation of mild, moderate and severe drought episodes of varying length and duration.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.