Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!

Znaleziono wyników: 4

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
Numerous studies are conducted to improve the flow in the boundary layer to ensure laminar flow and in particular to increase flight safety. A new solution used to improve the laminar flow is the plasma actuator. The classic configuration of DBD plasma actuators is commonly used with the asymmetric electrode system. The manuscript describes the results of tests with a plasma actuator. Experimental tests were carried out on the built model of the wing with the SD 7003 profile, a plasma actuator was mounted on the upper surface. In contrast to the commonly used solution with solid tape copper electrodes, the novelty in the described research in the manuscript is the use of a large GND electrode (covering 70% of the upper surface of the wing) and a HV mesh electrode. The use of a plasma actuator on the upper surface of the wing affects the air flow in the boundary layer as a result of air ionization. The tests were carried out for a supply voltage from V = 7.0 kV to 12 kV and Reynolds number, Re = 87500 to 240000, flow velocity during the tests in the tunnel was in the range of U = 5-15 m/s and the angle of attack α = 5 -15 degrees. On the basis of the results experimental tests, the percentage change in the lift coefficient was calculated for the switched on and off DBD system. The obtained results indicate a maximum 17% increase in the lift coefficient for the plasma actuator activated for air flow U = 5 m/s and angle of attack α = 5 degrees. In the remaining configurations, changes in the lift coefficient amounted to 4%.
EN
The manuscript presents the methods of increasing the aerodynamic force of the airfoil, currently used in aviation, and the directions of further research development. Currently, several methods are known and used to increase the aerodynamic force of the airfoil. The most widespread ones include wing mechanization systems, among others, flaps and slats. The non-mechanical elements of the wing construction that enable to increase the carrying force are used as well, among others; wing cuffs, vortilons, vortex generator. Research is being carried out on the introduction of mechanical elements that increase the lift force (Continuous Trailing Edge Flap, Morphing Wing), as well as non-mechanical elements such as plasma actuators. The manuscript describes the selected non-mechanical and mechanical elements currently used to increase the lift and the directions for the development of further research on increasing the aerodynamic force.
EN
The manuscript presents selected designs of Dielectric Barrier Discharge (DBD) plasma actuators used to control the flow of the boundary layer on the surface of the wing. The principle of DBD plasma actuator operation and the process of the “ion wind” formation are presented. The manuscript presents the results of the tests carried out on the sash model with the SD 7003 profile and a DBD plasma actuator with two mesh electrodes, for which tests were carried out and tunnel images were recorded.
EN
The manuscript presents experimental research on a plasma reactor with two mesh electrodes and a micanite dielectric. Three types of electrode geometry were used in experimental research; mesh size 0.1 x 0.1 mm, 0.3 x 0.3 mm and perforated electrodes with Ø1.38 mm holes. The results of experimental research show the influence of electrode geometry on the ozone generation process. The use of electrodes perforated with Ø1.38 mm holes generates 20% lower ozone concentration, compared to the configuration with two mesh electrodes size 0.1 x 0.1 mm at the same power of discharges.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.