Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 3

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
One of the main errors in the machining accuracy of machine tools is the displacement through thermal induced deformation. Modern design and construction methods aim to optimize the heat flow in the machine to achieve minimum displacement. To enable a further improvement it is essential to know the displacement state of the complete machine structure. However, most measurement methods that are used to capture the influence of a thermal load only measure the displacement of the TCP or individual axes. This paper presents a methodology to capture the complex spatial displacement condition of a state of the art machine tool in one measuring cycle using a multichannel laser interferometer. It describes the development of the measurement model as well as the measurement setup in the workspace of the machine. With measurements according to the presented procedure, it is possible to uncover weak points in the structure of a machine tool and to derive warm-up and cooling strategies.
EN
In open-die forging it is state of the art to use simulation tools for creating forging plans and setpoint values for the forging press and the automated part manipulator. These forging plans define required positions and forces. Therefore, the process can be fully automated. However, even small variations of not considered influence parameters lead to different forging results and thus to a discontinuous process. Influencing factors are, e.g. material parameter deviations, uncertainties in force measurements or variations in the part temperature due to varying environmental conditions. This paper presents an approach for a fully automatic open-die forging process with respect to actual conditions, based on a parallel measurement of the workpiece geometry and temperature and a “process-real-time” adaptation on the controller system. The focus of this work is the development of a measuring strategy and an according sensor setup for the combined temperature and geometry measurement of the workpiece. In addition, the structure, the characteristic features of the components and the beam path of the sensors scanning units are shown. Furthermore, first experimental results for the alignment of the beam path are presented. In the outline, the setup and calibration strategy of the measurement system are stated.
EN
Temperature is one of the most important key parameter to consider in measurement and mechanical engineering, because every measurement has to be conducted with reference to standard temperature conditions (20°C, ISO 1). Strictly speaking, almost every measurement depends on the accuracy of the temperature measurement, which requires proper calibration. Therefore, standards list detailed criteria to fulfil temperature calibration with high precision. In fact, any calibration is only valid, if the whole measurement chain is taken into account. This would make recalibration necessary with each variation of the components in the measuring set-up (varying cable length, different measurement channel etc.), which is time-consuming or even impossible in practice. For that reason, this paper presents a practicable calibration strategy, which specifies each component individually and later combines the calibration results according to the composition of the measurement chain. This provides a fast and useful way to achieve the required accuracy of temperature measurement. The examined, exemplary measurement chain consists of an industrial platinum resistance thermometer (IPRT), cables with different lengths, an electrical amplifier and a reference temperature calibrator.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.