Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 8

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
This article presents the use of Artificial Neural Networks (ANNs) to analysis of the composite plate elements with cut-outs which can work as a spring element. The analysis were based on results from numerical approach. ANNs models have been developed utilizing the obtained numerical data to predict the composite plate’s flexural-torsional form of buckling as natural form for different cut-outs and angels configurations. The ANNs models were trained and tested using a large dataset, and their accuracy is evaluated using various statistical measures. The developed ANNs models demonstrated high accuracy in predicting the critical force and buckling form of thin-walled plates with different cut-out and fiber angels configurations under compression. The combination of numerical analyses with ANNs models provides a practical and efficient solution for evaluating the stability behaviour of composite plates with cut-outs, which can be useful for design optimization and structural monitoring in engineering applications.
EN
This article presents the problem of forecasting the length of machine assembly cycles in make-to-order production (Make-to-Order). The model of Make-to-Order production and the technological process of manufacturing the finished product are presented. The possibility of developing a novel method, using artificial intelligence solutions, to estimate machine assembly times based on historical company data on manufacturing times for structurally similar components, is described. It is assumed that the result of the developed method will be an intelligent system supporting efficient and accurate estimation of machine assembly time, ready for implementation in production conditions. Such data as part availability, human resource availability and novelty factor will be used as input data for learning the neural network, while the output variable during learning the neural network will be the actual machine assembly time.
PL
W niniejszym artykule przedstawiono problem prognozowania długości cyklu montażu maszyn w produkcji na zamówienie (Make-to-Order). Przedstawiony został model produkcji na zamówienie oraz proces technologiczny wytwarzania wyrobu gotowego. Opisana została możliwość opracowania nowatorskiej metody, wykorzystującej rozwiązania z zakresu sztucznej inteligencji, umożliwiającej szacowanie czasu montażu maszyn w oparciu o dane historyczne przedsiębiorstw, dotyczące czasów wytwarzania podobnych konstrukcyjnie elementów. Zakłada się, iż rezultatem opracowanej metody będzie inteligentny system wspomagający skuteczne i dokładne szacowanie czasu montażu maszyn, gotowy do implementacji w warunkach produkcyjnych. Jako dane wejściowe do uczenia sieci neuronowej wykorzystane zostaną takie dane jak: dostępność części, dostępność zasobów ludzkich oraz czynnik nowości, zaś zmienną wyjściową podczas uczenia sieci neuronowej będzie rzeczywisty czas montażu maszyny.
EN
The article presents a new concept for monitoring industrial tank reactors. The presented concept allows for faster and more reliable monitoring of industrial processes, which increases their reliability and reduces operating costs. The innovative method is based on electrical tomography. At the same time, it is non-invasive and enables the imaging of phase changes inside tanks filled with liquid. In particular, the hybrid tomograph can detect gas bubbles and crystals formed during industrial processes. The main novelty of the described solution is the simultaneous use of two types of electrical tomography: impedance and capacitance. Another novelty is the use of the LSTM network to solve the tomographic inverse problem. It was made possible by taking the measurement vector as a data sequence. Research has shown that the proposed hybrid solution and the LSTM algorithm work better than separate systems based on impedance or capacitance tomography.
EN
This study investigates the application of Artificial Neural Networks (ANN) in forecasting agricultural yields in Kazakhstan, highlighting its implications for economic management and policy-making. Utilizing data from the Bureau of National Statistics of the Republic of Kazakhstan (2000-2023), the research develops two ANN models using the Neural Net Fitting library in MATLAB. The first model predicts the total gross yield of main agricultural crops, while the second forecasts the share of individual crops, including cereals, oilseeds, potatoes, vegetables, melons, and sugar beets. The models demonstrate high accuracy, with the total gross yield model achieving an R-squared value of 0.98 and the individual crop model showing an R value of 0.99375. These results indicate a strong predictive capability, essential for practical agricultural and economic planning. The study extends previous research by incorporating a comprehensive range of climatic and agrochemical data, enhancing the precision of yield predictions. The findings have significant implications for Kazakhstan's economy. Accurate yield predictions can optimize agricultural planning, contribute to food security, and inform policy decisions. The successful application of ANN models showcases the potential of AI and machine learning in agriculture, suggesting a pathway towards more efficient, sustainable farming practices and improved quality management systems.
EN
The purpose of the article is to propose a fuzzy logic solution for decision-making based on data from CRM (Customer Relationship Management) systems to evaluate banking customer attractiveness. The article is based on theory about management IT systems, especially the CRM type. Based on the literature research, nine identified factors were proposed that can influence whether the relationship with the customer will be profitable for the bank. Factors that affect banking customer attractiveness are considered, including the share of the customer's wallet and the customer's tendency to express a positive opinion of the bank. Data allowing for the identification of these factors is collected in the bank's IT systems, among other CRMs. Based on the research, a model prepared in Simulink using a Mamdani-type Fuzzy Inference System was made. It is a decision model that provides a result in the form of a binary value of 0 or 1, where 1 means it is worth investing in a customer, while 0 means it is not. After considering the subjective opinions, competence and experience of specialists and confronting them with the results from the developed model, it can be confirmed that the model works as expected.
EN
The paper evaluated the possibility of using artificial neural network models for predicting the compressive strength (Fc) of concretes with the addition of recycled concrete aggregate (RCA). The artificial neural network (ANN) approaches were used for three variable processes modeling (cement content in the range of 250 to 400 kg/m3, percentage of recycled concrete aggregate from 25% to 100% and the ratios of water contents 0.45 to 0.6). The results indicate that the compressive strength of recycled concrete at 3, 7 and 28 days is strongly influenced by the cement content, %RCA and the ratios of water contents. It is found that the compressive strength at 3, 7 and 28 days decreases when increasing RCA from 25% to 100%. The obtained MLP and RBF networks are characterized by satisfactory capacity for prediction of the compressive strength of concretes with recycled concrete aggregate (RCA) addition. The results in statistical terms; correlation coefficient (R) reveals that the both ANN approaches are powerful tools for the prediction of the compressive strength.
EN
The paper presents the results of modeling 2D surface roughness parameters in milling by means of an artificial neural network (ANN). The AZ91D magnesium alloy was used. A HSS milling cutter was employed in the research. The main aim of the study was to obtain the lowest possible surface roughness (good quality) using a commonly available HSS cutter. The results of the research work were presented in the form of bar charts, surface charts and graphs depicting the quality of artificial neural networks. The conducted research shows that it is possible to carry out the machining processes that enable obtaining an average surface quality (defined by roughness parameters Ra, Rz, RSm, Rsk). The Ra, Rz, RSm parameters increase along with the machining parameters (fz, ap), as expected. The Rsk parameter takes (in most cases) negative values, which may indicate a surface with more intense friction and indicative of flat-topped distribution. On the other hand, the results of modeling the selected parameters – Ra, Rz, RSm – with the use of artificial neural networks allow concluding that the obtained network models show satisfactory predictive ability (R = 0.99), and thus are an appropriate tool for the prediction of surface roughness parameters.
EN
Modern businesses boost management by implementing integrated IT systems, such as highly popular in Poland – SAP software, to aid the enterprise resource planning (ERP). This paper evaluates the implementation of an ERP system at a steel wheel rims manufacturer and distributor. The main research method was questionnaire, conducted at the Logistics & Customer Service department. The data acquired from the conducted research were analysed and processed to evaluate the implemented solution. Areas for improvement were pinpointed and concerned the adjustment of the software solution to the needs of the enterprise.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.