Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!

Znaleziono wyników: 3

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
In order to avoid the negative effects of increasing the amount of RME in the fuel, the nitrON® package was used, containing 3 different additives: stabilizing, washing and increasing the cetane number of the fuel. The tests were carried out with the use of the Caterpillar C27 engine of the 6Dg locomotive connected to a water resistor. The hourly engine fuel consumption (FC), NOx concentration and exhaust opacity were measured for 3 points of the F test, in accordance with UIC 624. The concentration of the nitrON® additive in the test fuel was 1500 ppm (v/v). For idling, the reduction in FC value was only 1.5% (in relation to the base fuel), but for a very high engine load and nominal rotational speed, the percentage reduction in FC was as high as 5%. The reduction of NOx concentration for idling (as a result of using nitrON®) was approx. 10%, while for high engine load, the percentage reduction of NOx concentration in the exhaust gas exceeded 15%.
EN
To avoid the negative effects of increasing the amount of RME in the diesel fuel (to 10%), three different additive packages were used: stabilising, cleaning, and increasing the cetane number with different concentrations. The tests were carried out using a 4-cylinder, turbocharged 1.9 TDI engine from VW. The tests were carried out for 4 fuels (comparative fuel with a content of 7% RME and 3 test fuels with a content of 10% RME, differing in the content of the additive package. It was found that each of the 3 additive packages used does not have a significant impact on fuel consumption. However, a different effect of the tested additives on the composition of exhaust gases was observed. The first package had a slight effect on reducing the NOx concentration in the exhaust, but only for small engine loads. On the other hand, the second additive pack worked more effectively only at higher engine loads (in relation to the reduction of NOx concentration in the exhaust gases). In the third packet, the amount of the cetane additive was doubled (compared to the second packet). Then, the reduction in the NOx concentration in the exhaust gas by 3-8% was obtained with reference to the comparative fuel.
EN
This publication is the next part of the article “The influence of cetane-detergent additives in diesel fuel increased to 10% of RME content on energy parameters and exhaust gas composition of a diesel engine”. The cause-effect analysis of the phenomena related to the impact of 3 additive packages used in diesel oil with RME content increased to 10% (compare to standard diesel fuel with 7% of RME) was described. The basis for the analysis of the impact of the tested fuels on energy parameters and composition of exhaust gases were the parameters of indicator diagrams and heat release parameters. It was found that the first set of additives affects the delay of auto-ignition of fuel and kinetic fuel combustion speed only at low engine loads. In this range of engine operation the NOx concentration in the exhaust gas is low and besides there is a large of EGR. The second additive package was operated at high engine loads but its impact on the lower self-ignition delay was quantitatively small. Therefore, in the third packet of additives, the amount of additives used in the second packet was doubled. Then a satisfactory shortening of the self-ignition delay and reduction of the max rate of kinematic heat release was achieved as a reason of a reduction of NOx concentration in the exhaust up to 8% (compared to the reference fuel).
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.