The objective of this study was to create a new material utilizing a biopolymer (sodium alginate) and the powder of brown algae for the elimination of organic pollutants like dyes by adsorption from a water-based solution. The alginate/algae composite beads used in this study as an adsorbent were created by inotropic gelation of sodium alginate utilizing calcium ions as a cross-linking agent. The beads thus synthetized had been characterized by using different techniques in order to assess their characteristics. The adsorption procedure was studied in a batch mode at room temperature using methyl violet, a cationic dye chosen as an organic pollutant. The influence of beading parameters like contact time, methyl violet concentration, pH, sorbent amount and agitation speed was studied. It was found that the adsorption capacities were notably influenced by the initial dye concentration, pH and bead dose. Indeed, the results found indicated that the equilibrium sorption of methyl violet by this adsorbent was reached in around 3 hours for the different concentrations studied (10 mg/L, 40 mg/L and 70 mg/L) with percentage dye removal of around 80% at the optimum bead amount of 2 g. The kinetic modeling had shown that the model of the pseudo-second-order kinetic governed the adsorption rate of methyl violet on alginate/brown algae composite beads.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.