Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 3

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
Energetic salts of doubly-protonated 3-hydrazino-4-amino-1,2,4-triazole (2-4), and mono-protonated 3-hydrazino-4-amino-1,2,4-triazole (5-7), have been prepared in high yields from the corresponding oxygen-containing tetrazoles by (i) reaction of free acids and neutral 3-hydrazino-4-amino-1,2,4-triazole, or (ii) metathesis reactions of 3-hydrazinium-4-amino-1H-1,2,4-triazolium di-chloride with the silver salts of the corresponding oxygen-containing tetrazoles. All of these energetic salts were fully characterized by single-crystal X-ray diffraction, FT-IR and DSC measurements. All of the structures are dominated by extensive hydrogen bonds due to amino groups, hydrazino groups and oxygen atoms in the molecules. These salts exhibit good thermal stability, especially the salt 3-hydrazinium-4-amino-1H-1,2,4-triazolium 1H,1’H-5,5’-bitetrazole-1,1’-diolate (4), which exhibits a measured onset of decomposition temperature of 237 °C. Quantum chemical calculations, carried out using the Gaussian 03 suite of programs and based on the experimental densities were used to calculate the detonation pressures and velocities of all of the salts.
EN
Four complexes with the formula of [M5(DATr)12~14(H2O)6](ClO4)10 (M = Mn (1), Co (2), Ni (3), Zn (4)) about their synthesis, structures and some energetic properties (such as sensitivities tests) have been described, where the DATr here denotes 3,4-diamino-1,2,4-triazole. These four compounds are all light metallic complexes with good thermal stability. The structures of 2-4 were determined by single-crystal X-ray diffraction, and the crystal structures mainly consist of penta-nuclear units. All the structures have a common interesting property in which DATr plays a role of bi-dentate ligand. Besides, it is observed from the crystal structure of 4 that DATr can be also act as a mono-dentate ligand. Thermodynamic studies of their decomposition properties and kinetic parameters show that the four complexes have high thermal stabilities. Furthermore, tests of their impact and friction sensitivities show that complexes (2) and (3) can be potential candidates as primary explosives to replace toxic lead azide.
3
Content available Energetic Nitrogen-rich Salts
EN
Energetic salts as a unique class of energetic materials have recently been investigated widely, since they possess advantages over their atomically similar nonionic analogues – they tend to exhibit lower vapor pressures, higher densities and better thermal stabilities. Furthermore, these salts are readily improved upon by the appropriate combination of different cations and anions. Over the last twenty years, our group has continued to synthesize and study novel ionic energetic materials. Here, we have summarized all of the series of nitrogen-rich energetic salts. This review gives an overview of the various studies dealing with synthetic aspects and some of the physicochemical properties of ionic compounds that are based on ammonia, guanidine, semicarbazide, carbohydrazide, tetrazine, tetrazole, triazole and imidazole. In addition, their potential applications in the fields of explosives and propellants are discussed. We hope these investigations will be helpful in providing a wider insight for future research in the area of energetic salts.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.