Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
Purpose: This research examined the effects of artificial-aging temperature and time on tensile strength, hardness, microstructure, and fault morphology in AlSiMg. Design/methodology/approach: This research was conducted using aluminium alloy at 120°C, 150°C, and 180°C artificial-aging temperature and 6 hours holding time. The tensile test used ASTM B211-03 standard and hardness test adapted to ALCOA 6061 standard. Findings: Tensile test results indicated the highest tenacity on aluminium alloy at a 150ºC temperature that was 47.263% strain level. In addition to the strain level, this research also obtained the highest tensile strength level at 180ºC that was 62.267 kgf/mm2 and the highest hardness value that was 110 HV. The increase in tensile strength and hardness at 180°C was caused by the increase in Mg, Si, and Al. Based on the microstructure test, the highest tenacity was obtained at 150°C temperature as the result of closed and gathered Mg2Si precipitates; while at 180°C temperature, the precipitates appeared to be more distributed, causing a rise in hardness value and tensile strength. AlSiMg tenacity also exhibited from the number of dimples compared to cleavages at 150°C temperature. Research limitations/implications: The limitation that found in this research was conducted using AlSiMg aluminium Al6061 specimen with an artificial-aging treatment at 120ºC, 150°C, and 180°C temperature for 6 hours and then compared to the raw material. AlSiMg tensile specimen was made according to ASTM E8-E8M standard. Practical implications: This research can be applied in industrial manufacture process to find tensile strength, hardness, microstructure, and fault morphology of Al6061 alloy. Originality/value: According to research result, can be understood that by conducting these experiments, Artificial-aging treatment temperature variations in AlSiMg aluminium alloy could increase hardness.
EN
Purpose: This research is aimed to describe heat treatment process by using multistage artificial aging for Al-Cu alloy with Taguchi method in Minitab 16 to optimize the heat treatment parameters. This research conducted due to the applied of aluminium alloy in automotive industrial and aircraft industrial that has good properties for fabrication. Design/methodology/approach: Methodology that use in this paper is experimental design with statistical approach. Three controllable parameters were selected, they were temperature aging, holding time of aging, and the number of stages. The hardness value and impact value after multistage artificial aging were chosen as quality characteristics. The experiment was performed using orthogonal arrays of L9 (33). Findings: The finding that resulted in this research are the most significant parameters that affected hardness and toughness value of Al-Cu alloy against multistage artificial aging. The optimal hardness and toughness for Al-Cu alloy were obtained with heat treatment at temperature 200ºC, holding time for 6 hours, with two stages artificial aging. Research limitations/implications: The limitation that found in this research is even optimal level had been determined, it is unable to determine the true optimal value of each design parameters. Practical implications: This optimization process can be applied in manufacture process in industrial without spend expensive cost and time. Originality/value: According to research result, can be understood that by conducting these experiments, the impact value and the hardness value of Al-Cu alloy increase with multistage artificial aging treatment.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.