Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
There have been significant developments in clinical, experimental, and theoretical approaches to understand the biomechanics of tumor cells and immune cells. Cytotoxic T lymphocytes (CTLs) are regarded as a major antitumor mechanism of immune cells. Mathematical modeling of tumor growth is an important and useful tool to observe and understand clinical phenomena analytically. This work develops a novel two-variable mathematical model to describe the interaction of tumor cells and CTLs. The designed model is providing an integrated framework to investigate the complexity of tumor progression and answer clinical questions that cannot always be reached with experimental tools. The parameters of the model are estimated from experimental study and stability analysis of the model is performed through nullclines. A global sensitivity analysis is also performed to check the uncertainty of the parameters. The results of numerical simulations of the model support the importance of the CTLs and demonstrate that CTLs can eliminate small tumors. The proposed model provides efficacious information to study and demonstrate the complex dynamics of breast cancer.
EN
Among the predominant cancers, breast cancer is one of the main causes of cancer deaths impacting women worldwide. However, breast cancer classification is challenging due to numerous morphological and textural variations that appeared in intra-class images. Also, the direct processing of high resolution histological images is uneconomical in terms of GPU memory. In the present study, we have proposed a new approach for breast histopathological image classification that uses a deep convolution neural network (CNN) with wavelet decomposed images. The original microscopic image patches of 2048 1536 3 pixels are decomposed into 512 384 3 using 2-level Haar wavelet and subsequently used in proposed CNN model. The image decomposition step considerably reduces convolution time in deep CNNs and computational resources, without any performance downgrade. The CNN model extracts the deep features from Haar wavelet decomposed images and incorporates multi-scale discriminant features for precise prognostication of class labels. This paper also solves the demand for massive histopathology dataset by means of transfer learning and data augmentation techniques. The efficacy of proposed approach is corroborated on two publicly available breast histology datasets-(a) one provided as a part of international conference on image analysis and recognition (ICIAR 2018) grand challenge and (b) on BreakHis data. On the ICIAR 2018 validation data, our model showed an accuracy of 98.2% for both 4-class and 2-class recognition. Further, on hidden test data of the ICIAR 2018, we achieved an accuracy of 91%, outperforming existing state-of-the-art results significantly. Besides, on BreakHis dataset, the model achieved competing performance with 96.85% multi-class accuracy.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.