Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 7

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
1
Content available remote Dwuzakresowa antena mikropaskowa dla systemu 5G
PL
Wprowadzenie standardu 5G telefonii bezprzewodowej wymusza poszukiwanie nowych anten lub układów antenowych aby sprostać wymogom transmisyjnym tego standardu. W pracy przedstawiona została dwuzakresowa antena mikropaskowa przeznaczona dla systemu 5G. Antena może pracować jednocześnie w dwóch pasmach częstotliwości 3,5 i 26 GHz przewidzianych dla tego systemu. W zaproponowanej geometrii uzyskano antenę, która może pracować nie tylko w zadanych dwóch pasmach ale również w wielu innych pasmach częstotliwości. Zaproponowana konstrukcja anteny może być zaadoptowana do tworzenia anten w dowolnych pasmach częstotliwości.
EN
The introduction of the standard 5G of the wireless telephony extorts the search of new antennas or antenna systems to come up to broadcasting requirements of this standard. In the work the dual-band microstrip antenna intended for of the system 5G has been presented. The antenna can work simultaneously in two frequency ranges 3,5 and 26 GHz provided for this standard. In proposed geometry one obtained the antenna which can work not only in given two bands but also in many other wavebands. Proposed construction of the antenna can be used in design of antennas with any wavebands.
EN
The automotive market is developing very dynamically. In recent years, we can observe activities of automotive concerns in the production of new models of electric, hybrid and hydrogen vehicles, and conventional cars are supplied with increasingly economical and low-emission engines. There are also increasingly stringent standards related to exhaust emissions from the exhaust system. From September 1, 2018, passenger cars have to comply with the Euro 6d-Temp emission standard and be homologated according to the WLTP test procedure including the WLTC driving cycle and emission measurements in road traffic conditions. The exhaust components measured during the test, such as carbon oxides, nitrogen oxides or hydrocarbons, are toxic to living organisms. However, it seems that the most important issue in the long term may be the value of carbon dioxide emissions, the excess of which poses an ecological threat to the entire planet. The production of new vehicles equipped with modern complicated combustion engines, batteries, fuel cells and electronic devices is associated with a very high emission of this greenhouse gas The authors of the following article, based on their own research, sought to estimate the ecological profitability of replacing a used passenger car meeting the Euro-4 emissions standard for a new vehicle bearing in mind the value of carbon dioxide emissions during vehicle production. The analysis was to indicate how intensive the annual operation of the vehicle should be to make it profitable to recycle and replace it with a modern car with lower emissions considering the global sum of carbon dioxide emissions.
EN
Limiting emissions of harmful substances is a key task for vehicle manufacturers. Excessive emissions have a negative impact not only on the environment, but also on human life. A significant problem is the emission of nitrogen oxides as well as solid particles, in particular those up to a diameter of 2.5 microns. Carbon dioxide emissions are also a problem. Therefore, work is underway on the use of alternative fuels to power the vehicle engines. The importance of alternative fuels applies to spark ignition engines. The authors of the article have done simulation tests of the Renault K4M 1.6 16v traction engine for emissions for fuels with a volumetric concentration of bioethanol from 10 to 85 percent. The analysis was carried out for mixtures as substitute fuels – without doing any structural changes in the engine's crankshafts. Emission of carbon monoxide, carbon dioxide, hydrocarbons, oxygen at full throttle for selected rotational speeds as well as selected engine performance parameters such as maximum power, torque, hourly and unit fuel consumption were determined. On the basis of the simulation tests performed, the reasonableness of using the tested alternative fuels was determined on the example of the drive unit without affecting its constructions, in terms of e.g. issue. Maximum power, torque, and fuel consumption have also been examined and compared. Thus, the impact of alternative fuels will be determined not only in terms of emissions, but also in terms of impact on the parameters of the power unit.
PL
Obniżenie emisji CO2 stanowi wyzwanie dla Europy i Świata. Krytyczną wartością jest wzrost średniej temperatury o 1,5 st. C. Transport jest odpowiedzialny za 20–25% emisji dwutlenku węgla. W Polsce znaczącą grupę pojazdów stanowią pojazdy z silnikami zasilanymi dwupaliwowo (benzyna + LPG). Autorzy referatu skupili się na problemie emisji dwutlenku węgla z pojazdów osobowych, których silniki zasilane były gazowym paliwem LPG.
EN
Reducing CO2 emissions is a challenge for Europe and the world. The critical value is an increase in the average temperature of 1.5 deg. C. Transport is responsible for 20-25% of carbon dioxide emissions. In Poland, a significant group of vehicles has dual fuel engines (petrol + LPG). The paper's authors focused on the issue of carbon dioxide emissions from passenger vehicles whose engines were powered by LPG gas.
EN
The results of measurements of exhaust emissions in real road traffic differ significantly from the results of stationary homologation tests. One of the solutions, helpful in determining the actual emission, is the creation of stationary exhaust emission tests simulating the use of the vehicle on the road. The article presents the method of reconstructing the synthetic driving test obtained on the basis of road tests and presents the obtained profile of the speed course. The authors discussed the reasonableness of selecting the emission component determining the correctness of the representativity of the stationary test obtained, which determines the amount of work done by the engine.
EN
Air pollution is a challenge for municipal authorities. Increased emission of PM10 and PM2.5 particles is particularly noticeable in Poland primarily the autumn and winter period. That is due to the start of the heating season. According to the above data, road transport accounted for approximately 5% of the creation of PM10 particles, ca. 7% of PM2.5 and approximately 32% for NOx. In Poland, suspended particles (PM10 and PM2.5) cause deaths of as many as 45,000 people a year. The issue of smog also affects other European cities. Therefore, it is necessary to undertake concrete efforts in order to reduce vehicle exhaust emissions as much as possible. It is therefore justifiable to reduce the emission of exhaust pollution, particularly NOx, PM, PN by conventional passenger cars powered by compression ignition engines. Emissions by these passenger cars have been reduced systematically. Comparative tests of the above emission of exhaust pollution were conducted on chassis dynamometer of such passenger car in NEDC cycle and in the new WLTC cycle in order to verify the level of emissions from this type of passenger car. Measurements of fuel consumption by that car were also taken. Emission of exhaust pollution and fuel consumption of the this car were also taken in the RDE road test.
EN
The article presents and compares the results of exhaust emission tests in conditions of real vehicle traffic with the results obtained during bench tests on a chassis dynamometer in conditions of road traffic simulation. A series of tests were carried out using a mobile exhaust analyzer and a vehicle speed recorder. The research route was designated in the center of a large urban agglomeration. Laboratory tests were designed according to an algorithm approximating the actual driving sections, and when choosing their order during the test construction, a random factor was introduced. The presented approach reflects the random nature of road traffic while ensuring the representativeness of toxic emissions from the vehicle's exhaust system. The results of measurements of carbon dioxide emission, carbon monoxide, nitrogen oxides and hydrocarbons registered in road and stationary, laboratory emissin tests were compared. Substantial agreement was found between the tests. Difficulties and differences in results due to research problems have also been described.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.