A method of tribological testing of models with such sliding friction using a simple pin-on-disc mechanism was presented. Wear resistance indicators of unfilled polyamides PA6, PA66 and composites based on polyamide PA6+30GF, PA6+30CF, PA6+MoS2, PA6 and oil coupled with steel C45 are determined. They, as polymeric materials with the property of self-lubrication, they are often used in metal-polymer dry friction bearings. Based on them, wear resistance characteristics of these polymeric materials at sliding friction are established. They are used as basic parameters for developed by authors mathematical model of material wear kinetics at sliding friction and analytical research method of metal-polymer sliding bearings research. For comparative assessment of wear resistance of the investigated polymeric materials, their wear resistance diagrams are constructed. Thef show the functional dependence of wear resistance on specific friction forces. It is proved that the wear resistance of materials nonlinearly depends on specific pressure, i.e., the specific friction forces. Qualitative and quantitative influence of the type and structure of fillers (which improve the tribological properties of the base polymer PA6) on their wear resistance has been established. The forecast estimation of durability of metal polymer bearings made of the specified polyamides by the author's method of calculation taking into account their various wear resistance, characteristics of elasticity and conditions of dry friction is carried out. The research results are presented graphically, which facilitates their understanding and analyses.
Using the author's method of research of hybrid (metal-polymer) plain bearings the calculation of their load carrying capacity (contact pressures) is carried out. Studies have been conducted for metal-polymer bearings with a bushing of two types of polymer composites: epoxy based antifriction composite materials DIAMANT Moglice (DIAMANT Metallplastic GmbH) and DK6 (PT) (fillers - graphite, MoS2, Zr). The elastic constants of composite materials, in particular the Young's modulus, have a noticeable effect on the contact pressures in metal-polymer bearings. The Young's modulus is significantly different in these composite materials. In accordance with this factor, the influence of load, bushing diameter and radial clearance on the maximum contact pressures was studied. Quantitative and qualitative regularities of maximum contact pressures from the accepted factors of influence: Young's modulus, loading, bushing diameter, radial clearance, type of bushing material are established. The obtained results are compared with the results obtained by known conventional calculating methods of contact pressures.
Guides (linear plain bearings) of reciprocating motion are widely used in many areas of human activity. However, at present there are no reasonable methods for their calculation, in particular metal-polymer guides. The author's method of contact strength calculation of cylindrical metal-polymer sliding guides is presented in the article. The effect of load, bushing diameter and radial clearance on the maximum contact pressures and their distribution in the guide was studied on the example of epoxy-based polymer composite material Moglice of the German company DIAMANT Metallplastic GmbH, which is used to restore tribotechnical sliding systems elements. Quantitative and qualitative regularities of dependence of contact pressures on the accepted factors of influence are established: at loading increase four times the maximum contact pressures and contact angles will increase twice irrespective of change of sizes of a radial clearance and diameter of a base; increasing the base diameter leads to a directly proportional decrease in maximum contact pressures; doubling the radial clearance leads to a -fold increase in pressure, regardless of changes in the magnitude of the load and the diameter of the base. Regularities of change of contact parameters from the specified factors are given graphically.
Calculation methods for predicting the service life of metal-polymer gears with height correction are proposed. Two methods for gear service life estimation are presented: a simplified method that assumes constant tooth interaction conditions and an improved method that takes into account wear-induced changes in tooth interaction conditions. Spur cylindrical gears with a steel gear and a pinion made of polyamide composite reinforced with carbon and glass fibres are studied. The effect of height correction on the service life of the gears is examined, considering the type of tooth engagement. It is established that with the improved method the service life of the gear is by up to 1.3 times longer than that calculated by the simplified method at optimal height correction coefficients. Optimal service life of the gear is achieved when the correction coefficients are x1 = – x2 = 0.1. The effect of the coefficient of friction on gear service life is investigated. It is found that the service life of the gear with a carbon fibre-reinforced pinion is by 8.1...9.3 times longer than that of the gear with a glass fibre-reinforced pinion.
The computational method of hybrid (metal-polymer) sliding bearings according to the load capacity and durability of the bushing made of polyamide filled with glass or carbon dispersed fibers was presented. The initial contact pressures were calculated and the influence of bushing wear on their relative reduction was investigated. The wear resistance of bearings with bushings made of both polymer composites was also evaluated. Regularities of their change from loading, diameter of the bushing and radial clearance were established.
The method of model triboexperimental studies to determine the basic mathematical model parameters of materials wear resistance at sliding friction is considered. The quantitative relative experimental characteristics of wear resistance of glass fibre and carbon fibre reinforced polyamide used in metal-polymer gear couple have been determined. Wear resistance functions of these functional polymeric composites have been established as the basic ones in the tribokinetic mathematical model of material wear for sliding friction conditions. Also, according to the conducted researches, wear resistance diagrams were constructed. They may be used as graphical indicators of wear resistance in the required range of specific friction forces. The dependences that connect the characteristic functions of wear resistance of these materials (obtained by the developed mathematical tribokinetic wear model) with linear wear and gearing service life are presented.
The wear mechanism of textured dimpled in conditions of lubricated fretting-wear is established, which, in contrast to others, takes into account possibility of removing deterioration products out of tribo-contact areas into dimples, preventing their action as abrasive material. Selection of optimal structural parameters of selectively dimpled areas allows to reduce duration of tribological couple running-in time. Depending on texture type, friction coefficient was reduced from 0.27 (for untreated furface) to 0.18, and wear loss – from 7.8 ×10–3g to 3.3 ×10–3g.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.