Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!

Znaleziono wyników: 4

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
A variety of tool shoulder designs comprising three families i.e. blade, spiral and circular shaped scrolls, were produced to improve the material flow and restrictions to avoid the tunnel void. The bobbin tools were manufactured by 3D printing additive manufacturing technology using solid filament. The butt weld joint was produced by each tool using plasticine as the workpiece material. The apparent surface features and bi-colour cross-sections provided a physical flow comparison among the shoulder designs. For the bobbin friction stir welding (BFSW), the tool shoulder with a three-spiral design produced the most stability with the best combination of the flow patterns on surface and cross-sections. The circular family tools showed a suitable intermixing on the surface pattern, while the blade scrolls showed better flow features within the cross-sections. The flow-driven effect of the shoulder features of the bobbin-tool design (inscribed grooves) was replicated by the 3D-printed tools and the analogue modelling of the weld samples. Similar flow patterns were achieved by dissimilar aluminium-copper weld, validating the accuracy of the analogue plasticine for the flow visualization of the bobbin friction stir welding.
2
Content available remote EBSD characterization of bobbin friction stir welding of AA6082-T6 aluminium alloy
EN
Electron Backscatter Diffraction (EBSD) was used to determine microstructural evolution in AA6082-T6 welds processed by the Bobbin Friction Stir Welding (BFSW). This revealed details of grain-boundaries in different regions of the weld microstructure. Different polycrystalline transformations were observed through the weld texture. The Stirring Zone (SZ) underwent severe grain fragmentation and a uniform Dynamic Recrystallisation (DRX). The transition region experienced stored strain which changed the grain size and morphology via sub-grain-boundary transformations. Other observations were of micro-cracks, the presence of oxidization, and the presence of strain hardening associated with precipitates. Flow-arms in welds are caused by DRX processes including shear, and low and high angle grain boundaries. Welding variables affect internal flow which affects microstructural integrity. The shear deformation induced by the pin causes a non-uniform thermal and strain gradient across the weld region, leading to formation of mixed state transformation of grain morphologies through the polycrystalline structure. The grain boundary mapping represents the differences in DRX mechanism I different regions of the weld, elucidates by the consequences of the thermomechanical nature of the weld. The EBSD micrographs indicated that the localised stored strain at the boundary regions of the weld (e.g. flow-arms) has a more distinct effect in emergence of thermomechanical nonuniformities within the DRX microstructure.
EN
The purpose of this study is to elucidate the flow features of the dissimilar Al-Cu welded plates. The welding method used is Bobbin Friction Stir Welding (BFSW), and the joint is between two dissimilar materials, aluminium alloy (AA6082-T6) and pure copper. Weld samples were cut from along the weld line, and the cross-sections were polished and observed under an optical microscope (OM). Particular regions of interest were examined under a scanning electron microscope (SEM) and analysed with Energy Dispersive X-ray Spectroscopy (EDS) using the AZtec software from Oxford Instruments. The results and images attained were compared to other similar studies. The reason for fracture was mainly attributed to the welding parameters used; a higher rotational speed may be required to achieve a successful BFSW between these two materials. The impact of welding parameters on the Al-Cu flow bonding and evolution of the intermetallic compounds were identified by studying the interfacial microstructure at the location of the tool action. The work makes an original contribution to identifying the solid-phase hybrid bonding in Al-Cu joints to improve the understanding of the flow behaviours during the BFSW welding process. The microstructural evolution of the dissimilar weld has made it possible to develop a physical model proposed for the flow failure mechanism.
EN
The flow-inducing effect of the bobbin-tool features (tri-flat pin and scrolled shoulder) were replicated by a simple analogue model for aluminium welds by layered plasticine samples. Flow patterns of the weld zone were clarified by a typical stereomicroscopy instrument assisted by dark-field/bright-field illumination. The effects of the pin features, specifically threads and flats in centre of bond zone and scrolled shoulder in sides of stirred zone, were identified. This study shows that internal flow features for BFSW welds is transferable from the friction stir welding process to the functional metal forming processes such where the shearing can extensively affect the microstructure. The similarity between the flow pattern of the provided aluminium samples and the plasticine analogue can validate the accuracy of the flow model presented in this work.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.