Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 3

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
The work presents the results of a research carried out with PlasmaLab Plus 100 system, manufactured by Oxford Instruments Company. The system was configured for deposition of diamond-like carbon films by ICP PECVD method. The change of an initial value of DC bias was investigated as a function of set values of the generator power (RF generator and ICP generator) in the constant power of the RF generator operation mode. The research shows that the value of DC bias nearly linearly depends on the RF generator power value and is affected only in a small degree by the power of ICP discharge. The capability of an installed OES spectrometer has been used to ensure the same starting conditions for the deposition processes of DLC films. The analysis of OES spectra of RF plasma discharge used in the deposition processes shows that the increase in ICP discharge power value results in the increased efficiency of the ionization process of a gaseous precursor (CH4). The quality of deposited DLC layers was examined by Raman spectroscopy. Basing on the acquired Raman spectra, the theoretical content of sp3 bonds in the structure of the film was estimated. The content is ranging from 30% to 65% and depends on ICP PECVD deposition process parameters.
EN
AlGaN/GaN heterostructures attract attention of many research groups over the last decade because of their superior properties (high mobility and saturation velocity of 2DEG) and strong capability in high frequency/power electronics and sensors applications. One of the factors which reduces the mobility of two-dimensional electron gas (2DEG) is the alloy and interface roughness scattering mechanism occurring at the heterointerface. Mathematical calculations of a wave-function of 2DEG in the channel show that theses two phenomena play an important role, due to the fact that some electrons in 2DEG can migrate into AlGaN barrier and be strongly dissipated. One of the proposed solutions against alloy scattering in the buffer layer is the use of thin AlN spacer at the heterointerface between AlGaN and GaN layers. AlN layer enhances the conduction band offset due to a polarization-induced dipole in the AlN layer, and therefore increases carrier confinement. Several Al0.18GaN0.82/AlN/GaN heterostructures with different AlN spacer layer thickness were grown by MOVPE method for studies of the Hall mobility and sheet carrier concentration of 2DEG. Hall measurements performed using Van der Pauw shown mobility maximum at nominally 1.3 nm AlN spacer thickness and almost linear dependence of sheet carrier concentration with AlN spacer thickness in the range from 0.7 to 2 nm.
3
Content available remote Electro-optical properties of diluted GaAsN on GaAs grown by APMOVPE
EN
In this paper we report on the optical and electrical studies of single GaAs1-xNx epitaxial layers grown on GaAs substrates by means of atmospheric pressure metal organic vapour phase epitaxy (APMOVPE). Three kinds of samples with 1.2 %, 1.6 % and 2.7 % nitrogen content were studied. Optical properties of the layers were investigated with the use of room temperature transmittance and reflectance measurements. Subsequently Schottky Au–GaAs1-xNx contacts were processed and characterized by current-voltage (I-V) and capacitance-voltage (C-V) measurements within 80 – 480 K temperature range. From the I-V and C-V characteristics the ideality factor, series resistance and built-in potential were determined. Obtained diodes can be used for further studies on defects with the use of DLTS method.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.