Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
The requirements of sustainable development of the economy force the replacement of the previously used composite materials in the production of elements not only with lighter, but also more durable materials. These materials should meet more and more stringent environmental protection requirements. This study aimed to determine the possibility of introducing a polymer structural composite reinforced with natural fiber into the structure of the hull of vessels instead of the commonly used polymer-glass composite (GFRP). The hemp fabric was used to reinforce the polymer matrix. The compared analysis of the physical properties of the classic GFRP composites with obtained new HFRP composites, i.e. density, impact strength, as well as resistance to static tensile and bending, was carried out. As a result of the performed analyzes and comparison of the results with the standards, it can be concluded that it is possible to apply a polymer-hemp (HFRP) composite for the shipbuilding and boatbuilding needs – limited to plating elements with medium and low strength requirements.
EN
The article presents the results of the research related to the decomposition of polylactic acid (PLA)/halloysite nanotube (HNTs) biocomposites into a simple organic form. After manufacturing the nanocomposites, the evaluation of the composting process simulation was conducted using the biodegradation method. First, the selected properties of PLA/HNTs biocomposites, such as density, water absorption, and impact strength were tested. Next, the impact of the composting process on the behavior of PLA/HNTs composites was investigated from 30 to 90 days. Finally, the loss of mass of the composites, hardness, and the structural changes of biocomposites under the composting conditions before and after the composting were evaluated using SEM microscopy. The results showed that the PLA modified by HNT particles has biodegradation-friendly properties and therein is fully suitable for organic recycling. Due to this, in the coming years, it may contribute to the replacement of non-biodegradability polymers, i.e. polyolefins and polyesters, and reduction of plastic packaging wastes.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.