The paper reports on a long-wave infrared (cut-off wavelength ~ 9 μm) HgCdTe detector operating under nbiased condition and room temperature (300 K) for both short response time and high detectivity operation. The ptimal structure in terms of the response time and detectivity versus device architecture was shown. The response time of the long-wave (active layer Cd composition, xCd = 0.19) HgCdTe detector for 300 K was calculated at a level of τs ~ 1 ns for zero bias condition, while the detectivity - at a level of D* ~ 109 cmHz1/2/W assuming immersion. It was presented that parameters of the active layer and P+ barrier layer play a critical role in order to reach τs ≤ 1 ns. An extra series resistance related to the processing (RS+ in a range 5-10 Ω) increased the response time more than two times (τs ~ 2.3 ns).
In this work we report simulation and experimental results for an MWIR HgCdTe photodetector designed by computer simulation and fabricated in a joint laboratory run by VIGO Sytems S.A. and Military University of Technology. The device is based on a modified N+pP+ heterostructure grown on 2”., epiready, semi-insulating (100) GaAs substrates in a horizontal MOCVD AIX 200 reactor. The devices were examined by measurements of spectral and time responses as a function of a bias voltage and operating temperatures. The time response was measured with an Optical Parametric Oscillator (OPO) as the source of ~25 ps pulses of infrared radiation, tuneable in a 1.55–16 μm spectral range. Two-stage Peltier cooled devices (230 K) with a 4.1 μm cut-off wavelength were characterized by 1.6 × 1012 cm Hz1/2/W peak detectivity and < 1 ns time constant for V > 500 mV.
3
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
In this paper, we present experimental results of photoluminescence for series of InAs:Si heavily doped samples, with doping level varying from 1.6 × 1016 cm−3 to 2.93 × 1018 cm−3. All samples were grown using MBE system equipped with a valved arsenic cracker. The measurements were performed in the temperature range of 20 K to 100 K. Although the Mott transition in InAs appears for electron concentrations above 1014 cm−3, Burstein-Moss broadening of photoluminescence spectra presented in this article was observed only for samples with concentration higher than 2 × 1017 cm−3. For the samples with lower concentrations two peaks were observed, arising from the band gap and defect states. The intensity of the defect peak was found to be decreasing with increasing temperature as well as increasing concentration, up to the point of disappearance when the Burstein-Moss broadening was visible.
4
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
Three different types of samples of InP nanowires, i.e. undoped, doped with Si and doped with Te, were grown and measured using SEM and Raman spectroscopy. Scanning Electron Microscope (SEM) images showed differences in the length, homogeneity and curvature of the nanowires. The most homogenous wires, grown most perpendicular to the surface, were those Si doped. They were also the shortest. Raman spectroscopy showed that the nanowires doped with Si had the lowest Full Width at Half Maximum (FWHM) TO band, which suggests the highest crystal quality of these wires. For the wires doped with Te, which were the most inhomogeneous, a low energy acoustic band was also observed, which suggests the lowest crystal quality of these structures.
W pracy zaprezentowano technologię wytwarzania nanodrutów InP na podłożach InP o orientacji (100) oraz (111)B oraz nanodrutów GaAs na podłożach GaAs o orientacji (100) i (111). Nanodruty zostały wykonane za pomocą metody Epitaksji z Fazy Gazowej z Użyciem Związków Metaloorganicznych (MOVPE). Jako katalizator wzrostu wykorzystano nanocząstki złota o średnicy ~ 30 nm. Wszystkie prace zostały wykonane w zakładzie Epitaksji i Charakteryzacji Związków Półprzewodnikowych ITME.
EN
In this work the production methods of InP nanowires on InP (100) and (111)B substrates and GaAs nanowires on (100) and (100) substrates are presented. The nanowires were grown by Metalorganic Vapor Phase Epitaxy (MOVPE). Gold nanoparticles having a diameter of around 30 nm were used as a growth catalyst. All growth processes were carried out in the Department of Epitaxy and Characterization of ITME.
Grafen jest obecnie materiałem niezwykle popularnym zarówno w środowisku naukowym, jak i w mediach. Jego unikatowe właściwości pozwalają myśleć o nim jako o następcy krzemu w elektronice. Polska ma swój wkład w badaniach tego materiału, między innymi poprzez opracowanie nowatorskiej techniki wzrostu grafenu na SiC- polegającej na osadzaniu warstw węglowych z propanu. Spektroskopia ramanowska jest uznaną i nieniszczącą techniką badań struktur węglowych, w tym grafenu. W sierpniu 2012 r. w ITME został zakupiony spektrometr ramanowski optymalizowany do badań grafenu. W artykule zostaną przedstawione podstawy spektroskopii ramanowskiej i omówione pokrótce podstawowe techniki wytwarzania grafenu. Główny nacisk został położony na przedstawienie możliwości badawczych przy użyciu spektroskopii ramanowskiej.
EN
Graphene is a material that has recently become very popular with both the representatives of the scientific world and the media. The unique properties of graphene make it a successor to silicon in a new generation of electronics. Poland has contributed to the study of this material, among others by developing an innovative technique of graphene growth on SiC layers by chemical vapor deposition. Raman spectroscopy is a fast and non-destructive technique to analyze and characterize graphene. In August 2012 a new Raman spectrometer dedicated to the study of graphene was bought. In this article the basics of Raman spectroscopy and the graphene production technique are presented. However, the main goal is to show the capabilities and basic techniques of Raman spectroscopy in relation to graphene characterization and analysis.
Graphene synthesis by the CVD method performed on the surface of copper is one of the most promising techniques for producing graphene for low cost and large scale applications. Currently, the most commonly used Cu substrate for graphene growth is foil, however, there is still a need to find new substrates and improve the quality of graphene layers. Sputtered Cu films on insulating substrates are considered as an alternative. Here we show the properties of graphene grown by the CVD method on thin copper foil and PVD copper films on Si/SiO2 substrates. We compare data on the properties of graphene films transferred from different copper substrates onto SiO2/Si substrates. We note that graphene grown on sputtered Cu films creates a multilayer form on the boundaries which can be identified on micro-Raman maps and in SEM images.
PL
Wytwarzanie grafenu metodą CVD na podłożach miedzianych jest jedną z najbardziej perspektywicznych metod otrzymywania grafenu ze względu na niski koszt podłoża oraz szerokie możliwości zastosowania w przemyśle. Obecnie najczęściej stosowanym do wzrostu grafenu podłożem miedzianym jest folia, jednakże ciągle istnieje potrzeba znalezienia nowego podłoża tak by poprawić jakość warstw grafenu. Jako alternatywę rozważa się cienkie warstwy miedzi wytwarzane metodami PVD osadzane na nieprzewodzącym podłożu. W niniejszym artykule przedstawiamy własności grafenu wytwarzanego metodą CVD na cienkiej folii miedzianej oraz na warstwach miedzi osadzonych na Si/SiO2. Porównujemy także wyniki otrzymane dla przeniesionych warstw grafenu z obu rodzajów próbek.
Artykuł przedstawia wyniki prac nad optymalizacją konstrukcji diod laserowych dużej mocy i liniowych matryc diod laserowych na pasmo 800 nm. Przedstawione są charakterystyki elektrooptyczne diod laserowych o mocy emitowanej do 2,5 W i do 5 W w pracy ciągłej (CW), zależnie od rozmiarów rezonatora oraz matryc złożonych z 8. emiterów o mocy optycznej do 12 W (CW). Dla poprawy sprawności sprzężenia optycznego (np. ze światłowodem) zredukowano rozbieżność wiązki promieniowania diod do ok. 15° przez odpowiednie przeprojektowanie heterostruktury z naprężoną studnią kwantową GaAsP/(AlGa)As.
EN
The paper presents the results of studies on design optimisation of high power laser diodes and arrays for 800 nm wavelength range. Electrooptical characteristics of laser diodes emitting optical power up to 2.5 W and to 5 W (CW), depending on cavity size and of 8-emitter-arrays emitting up to 12 W (CW) are presented. Emitted beam divergence has been reduced down to some 15° by using modified design of tensile-strained GaAsP/(AlGa)As heterostructure.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.