Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
1
Content available remote Numerical sensitivity test of three-electrode laterolog borehole tool
EN
Finite element numerical simulation has been carried out to investigate quantitatively the response of the three-electrode laterolog borehole tool (LL3) on radial and vertical heterogeneity of the rock. In order to calculate the apparent resistivity from the electric potential and the current discharge of the measurement electrode the probe coefficient of the LL3 tool with finite electrode extent was determined. Two independent methods, a finite element modeling and a semi-analytical solution, resulted in the probe coefficient of approx. 0.15 m with a relative deviation of 2.4% due to the different geometry, resolution and electronics of the models. It was established that LL3 is only slightly sensitive to the presence of mud when the borehole diameter is d ≤ 30 cm and the ratio of the resistivity of rock and the borehole mud is 1 ≤ Rt/Rm ≤ 1000. Vertical heterogeneity test pointed out that the layer boundaries can be localized exactly even for thin bedded layer (with a thickness of 1 m) and the presence of low-resistive borehole mud. Correction factors were suggested to decrease the biasing effect of the low-resistive borehole mud and the shoulder beds on the apparent resistivity observed by LL3. Finally, it was verified that the probe has large penetration depth with excellent vertical resolution, what explains the enduring popularity of the LL3 tool in well logging.
2
Content available remote New Methods for Modeling Laterolog Resistivity Corrections
EN
The paper presents methods for laterolog response modeling. In Coulomb’s charges method, Laplace’s equation is solved for the electric field distribution in rock medium with internal boundaries between different resistivity layers. There, the boundary problem is reduced to Fredholm integral equation of the second kind. The second method uses a finite element array to model apparent resistivity from laterolog. The task is treated as DC problem and the Laplace equation is solved numerically. The presented methods were applied to borehole data covering a typical stratigraphic section of the Fore-Sudetic Monocline in southwestern Poland. Apparent resistivity was calculated using the Coulomb’s charges method and alternatively modeled using a finite element method which gave similar results. Then, a series of linear corrections for borehole, shoulder bed, and filtration effects for apparent resistivity obtained by the Coulomb’s charges method demonstrated the feasibility of calculating true resistivity of virgin and invaded zones. The proposed methods provide a flexible solution in modeling which can be adapted to other logs.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.