We consider classes of languages of overlapping tiles, i.e., subsets of the McAlister monoid: the class REG of languages definable by Kleene’s regular expressions, the class MSO of languages definable by formulas of monadic second-order logic, and the class REC of languages definable by morphisms into finite monoids. By extending the semantics of finite-state two-way automata (possibly with pebbles) from languages of words to languages of tiles, we obtain a complete characterization of the classes REG and MSO. In particular, we show that adding pebbles strictly increases the expressive power of two-way automata recognizing languages of tiles, but the hierarchy induced by the number of allowed pebbles collapses to level one.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.