Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!

Znaleziono wyników: 3

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
1
Content available remote Properties of sandwich metals joined by explosive cladding method
EN
Purpose: Paper presents results of investigations with two layers explosively formed sandwich composite consisting of different composition joint which requires very often knowledge of structure and mechanical properties. These properties are connected with microstructure that is influenced by technological factors under cladding. Design/methodology/approach: The sample bars were prepared from explosively formed sandwich composite near the join area. The methods of the light microscopy and the hardness and tensile test for evaluation of quality of joined sandwich metals were used. Investigations by a new fatigue method in the case sandwich composite steel CrNi(18/10) + Ti were completed. Findings: Measurement of micro-hardness in the zone of the joint a deformation of materials shows an increase value of that. Detailed metallographic observation detected in proximity of the joints an occurrence of structural non-homogeneities. Steel and titanium interface surfaces are corrugated. New fatigue method in the case sandwich composite steel CrNi(18/10) + Ti were verified. Research limitations/implications: Knowledge of microstructure characteristics will be extended by the method of SEM, including micro-analysis of individual structural components and surface analysis. Influence of experiment conditions on results of fatigue test must be more elaborated in future. Practical implications: The results may be utilized for a relation between structure and properties of the investigated materials in process of manufacturing. Originality/value: These results contribute to complex evaluation of properties explosively formed sandwich composite namely for explanation of structure developed new sandwich composites. The results of this paper are determined for research workers deal by development new exploitations of new sandwich composites.
2
Content available remote Structure and properties of Mg-Zrand Mg-Si alloys
EN
Purpose of this paper is to extend a complex evaluation of magnesium alloys which requires very often knowledge of structure and mechanical properties. These properties are connected with microstructure that is influenced by metallurgical and technological factors and conditions of exploitation. Presented knowledge expresses very important information for design and exploitation of these alloys. Design/methodology/approach: The methods of the light microscopy for metallographic and analyses of alloys were used. Findings: Objective of this work consisted in determination of structure and mechanical properties progressive magnesium alloys. Research limitations/implications: Knowledge of alloys structure characteristics will be determined new research direction of scope. Practical implications: The results may be utilized for a relation between structure and properties of the investigated material in process of manufacturing. Originality/value: These results contribute to complex evaluation of properties magnesium alloys namely for explanation of structure developed new magnesium alloys. The results of this paper are determined for research workers deal by development new exploitations of magnesium alloys.
3
Content available remote Fracture analysis of selected magnesium alloys after different testing methods
EN
Purpose: of this paper is to extend a complex evaluation of magnesium alloys which requires very often knowledge mechanical properties. These properties are connected with microstructure that is influenced by metallurgical and technological factors and conditions of exploitation. Very important information for design and exploitation of these alloys is knowledge of fracture characteristics. Design/methodology/approach: Testing methods used magnesium alloys were based on tensile test and torsion test. The methods of the light microscopy and SEM for metallographic and fracture analyses of alloys after testing were used. Findings: Objective of this work consisted in determination of changes of mechanical properties and fracture characteristics of magnesium alloy in dependence on testing methods. Mg-Al alloy with graduate aluminium content as cast state and after heat treatment was used. It was confirmed that during heating at chosen temperatures there occurs partial dissolution of minority phases. Research limitations/implications: According to the alloys characteristic, the applied cooling rate and alloy additions seems to be a good compromise for mechanical properties and microstructures, nevertheless further tests should be carried out in order to examine different cooling rates and parameters of solution treatment process and aging process. Practical implications: The results may be utilized for a relation between plastic and strength properties of the investigated material in process of research and manufacturing. Originality/value: These results contribute to complex evaluation of properties magnesium alloys namely for explanation of fracture mechanism in changing condition of testing and exploitation. The results of this paper are determined for research workers deal by development new exploitations of magnesium alloys.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.