Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
The influence of the surface roughness on adhesion strength of polyurethane coating on stainless steel alloy (316LVM) is introduced. These coatings are one of the development directions in coronary stent production. One of the widely spread stent base material is the 316LVM, so in the presented study these materials were involved. The samples were prepared by etching and electro-polishing. The current density and polishing time were changed to create samples with different surface roughness. After electro-polishing polyurethane (Chronoflex®) coating was applied. The adhesion of the coating on different surfaces was tested by scratch test (nano indenter technique). The increasing surface roughness gives stronger adhesion. According to our experiments it was concluded that the coronary stents, treated by etching without polishing could cut out the balloons during expansion, therefore the surface roughness should be under this value. It is recommended to use an electro-chemical treatment that is resulting Ra=1.5-2.0 μm roughness.
2
EN
The couple of magnesium alloy and aluminium alloy is a typical example of a hybrid material which is used in some high-tech engine blocks. The machinability of the constuituents in a hybrid workpiece is different which means the cutting edge material and its geometry has to be optimized for the best compromise. Since the CVD diamond thick film is an up-to-date edge material for light metals, it is a promising choice for machining of magnesium-aluminium hybrid material. The paper presents the influence of cutting edge geometry on the cutting force and specific cutting force during face milling of AZ91 magnesium alloy and AlSi12 aluminium alloy using CVD diamond thick film without coolant-lubricant.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.