Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
In mid-scale and large five axis overhead gantry type milling machines, the vertical z-slide (ram) often constitutes one of the most sensitive and critical components regarding stiffness, structural vibrations and thermal influences. During machining, the z-slide is loaded by (quasi-) static process and drive forces, transient acceleration forces, periodic excitations by the tool engagement, as well as by thermal effects resulting from altering ambient conditions, heated chips, cooling lubricant and power losses in drives, guides and bearings. Deflections, thermal deformations and vibrations of the z-slide lead to geometric machining errors and inacceptable surface location errors at the workpieces. Furthermore, instable cutting conditions and regenerative chatter limit applicable material removal rates and, thus, productivity. In this work, a newly developed hybrid material structure for an exemplary z-slide, involving metal parts and mineral cast, is introduced. Structural optimization methods as well as process simulation techniques were applied in order to derive the final design solution. The integration of active cooling circuits for thermal stabilization is investigated and the use of fibre optical strain sensors is analysed with respect to a state monitoring of the machine tool component.
EN
By integrating sensors and actuators, intelligent machine tool components can be realized, which allow the monitoring of machining processes and machine tool states and an active influencing of process conditions. In the design and layout of these intelligent machine tool components, their mechanical structure and the functional performance of the sensor and actuator sub-systems have to be optimized. As an example, a sensor and actuator integrated fixture system for clamping large but sensitive aerospace structural parts is presented here. In order to investigate the major influences of design approaches on the behaviour of the workpiece and fixture, especially with respect to vibrations and process stability during milling, multiple test rigs and prototypes for basic analyses and machining tests were developed and realized. Experimental and Finite Element Analysis (FEA) results are presented and discussed. Process simulations were conducted taking the dynamic behaviour of the clamped workpiece at different processing steps into account. This simulation can be used for predicting the limits of the process stability. An approach of sensor and actuator integration is described and test results are shown. The paper introduces a principle design and layout methodology for similar intelligent machine tool components.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.