Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
The question of the connection between solar and thunderstorm activity is not new. The discussion among scientists began before the cosmic era. The correlations of the ground-based registration of the cosmic ray flux and meteorological observations have been performed since the 50s of the 20th century. The discussed problem is related to the influence of cosmic rays on the creation of clouds, particularly thunderstorm clouds. The intensity of the galactic cosmic ray flux is controlled by the density and velocity of the solar wind. The increase in the solar wind flux during high solar activity leads to decreasing galactic cosmic ray flux, but on the other hand, the solar activity creates solar cosmic rays. Using data from the PERUN system and the DEMETER satellite, we tried to estimate the connection between the thunderstorm activity in Poland and solar activity during the period of the DEMETER operational activity (2004-2010). The influence of thunderstorms on the ionosphere and its dependence on solar activity is also discussed. However, due to the short time interval of the available data covering an insignificant part of the solar cycle, close to the minimum activity, our findings are not fully conclusive. No correlation was found between the cosmic ray flux and lightning activity given by the number of the discharges. However, some of the most energetic lightning discharges in the analyzed period occurred close to the minimum of the solar activity and their appearance is discussed.
EN
Tool for the Analysis of Radiations from lightnings and Sprites (TARANIS) is a French Space Agency’s (CNES) satellite mission planned for launch in 2020. It is designed for investigating phenomena related to thunderstorm activity, transient luminous events (TLEs) and amongst them - red sprites. The satellite is equipped with cameras, photometers, energetic particles detectors, ion probe and electromagnetic sensors of wide frequency spectrum. It will be the most versatile satellite for measuring TLEs ever sent to space. In this article, theories that are fundamental for understanding sprites and sprites-related measurements of TARANIS mission are presented. The current state of sprites phenomenology and their possible generation mechanisms are presented. The article briefly covers streamer discharges, cloud charge structure at the TLE occurrence, electric breakdown of the air and Runaway Relativistic Electron Avalanche (RREA). At the end, TARANIS mission equipment and goals that are related to presented theories are presented.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.