Direct torque control (DTC) allows for very high quality torque control without a need for current controllers tuning or using coordinate transformation. However, barge torque ripples arise as well as inconstant inverter switching frequency due to the hysteresis of comparators. This paper present a backstepping/DTC control based on the space vector modulation (SVPWM) for double star synchronous machine (DSSM) to reduce the torque, flux, current and speed pulsations during steady state. By the coordinate transformation the DSSM models are presented in view of control. Then a conventional DTC is developed to get a decoupled system and a PI controller is designed to control the speed. To improve the static and dynamic control performance of the DSSM, the speed controller is designed using a backstepping/DTC procedure in conjunction with SVPWM. Simulation results with the conventional DTC and proposed backstepping/DTC are presented and compared. Results show the effectiveness and the robustness of the approach proposed.
2
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
In this paper, we propose a decentralized direct adaptive fuzzy control method for a class interconnected MIMO non linear plant encountered mainly in robotics. The establishment of the control law introduces very simplest assumptions. Indeed, the functions incorporating the plant dynamic must be continuous and the interconnection terms are bounded by unknown bounds. The fuzzy direct adaptive law is designed to compensate for the interconnections effect and to ensure the closed-loop stability, convergence of the controlled outputs and `boundedness' of adaptation parameters. The proposed method is tested by simulation on the robot Puma 560. In this test the robot is controlled in the operational space as that the robot tip follows a prescribed curve on the sphere where the orientation of the last link (sixth) is maintained radial related to the center of this sphere.
3
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
Based on the Lyapunov synthesis approach, several adaptive fuzzy control schemes have been developed during the last few years. In this paper we develop a robust adaptive fuzzy control law for MIMO nonlinear system class. The proposed method uses the Sugeno-Takagi fuzzy system as an universal approximator of continuous nonlinear functions. The adaptive controllaw is established based on the Lyapunov method. So, the output convergence, the boundedness of the parameters and the ststes are derived. Moreover, the fuzzy adaptive law incorporates a compensatory sliding term, which compensates for effects of the unavoidable reconstruction errors.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.