The present study reports an easy eco-friendly, cost efficient, and rapid method for the synthesis of silver nanoparticles (Ag NPs) using palm sprouts as reducing cum capping agent. Green synthesis of silver nanoparticles was successfully performed using palm sprouts plant extract via a simple and cheaper eco-friendly method. Palm sprouts extract reduces silver nitrate to silver nanoparticles. The resulting materials were analyzed by Fourier-transform infrared spectroscopy (FTIR), Scanning Electron Microscopy (SEM), and X-ray Diffraction (XRD) analysis. FT-IR spectrum confirms the presence of various functional groups in the active biomolecules, it acts as a capping agent for the nanoparticles. The morphology of this sample was analyzed through SEM and the presence of silver was confirmed accordingly. The green synthesized Ag NPs exhibited an excellent antibacterial activity against E. coli and P. aeruginosa and B. subtilis and S. aureus besides imparting efficient antimicrobial activity against pathogenic bacteria as well.
The spindle rotational accuracy is one of the important issues in a machine tool which affects the surface topography and dimensional accuracy of a workpiece. This paper presents a machine-vision-based approach to radial error measurement of a lathe spindle using a CMOS camera and a PC-based image processing system. In the present work, a precisely machined cylindrical master is mounted on the spindle as a datum surface and variations of its position are captured using the camera for evaluating runout of the spindle. The Circular Hough Transform (CHT) is used to detect variations of the centre position of the master cylinder during spindle rotation at subpixel level from a sequence of images. Radial error values of the spindle are evaluated using the Fourier series analysis of the centre position of the master cylinder calculated with the least squares curve fitting technique. The experiments have been carried out on a lathe at different operating speeds and the spindle radial error estimation results are presented. The proposed method provides a simpler approach to on-machine estimation of the spindle radial error in machine tools.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.