Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
Using the results of psychophysical and biomechanical experiments, NIOSH (National Institute for Occupational Safety and Health) Recommended Weight Limit (RWL), the Lifting Index (LI), the form of the asymmetry multiplier, and the criterion for compression force were investigated. Analysis of the results indicated a significant difference between the NIOSH RWL and the reported Maximum Acceptable Weight of Lift (MAWL). Contrary to the NIOSH lifting equation, the form of the asymmetry multiplier was found to be non-linear. The overall average of peak compression force on the L5/S1 was 3685 N. Fifty-eight percent of all compression forces reported in the biomechanical experiment were found to exceed the suggested 3400 N set by NIOSH guidelines. These results support previous research findings on the validity of NIOSH guidelines.
EN
This paper describes the results of an experimental study aimed at evaluating the biomechanical effects of working in a spatially restricted environment on manual lifting tasks. The main objective of the study is to estimate the biomechanical loading (in terms of peak compression and shear forces) on the lumbar spine for the selected combinations of limited headroom heights and twisting angles. A three-dimensional dynamic biomechanical model was utilized to assess peak compression and shear forces at the L5/S1 lumbosacral joint. The results indicated that by reducing the headroom height, the participants were forced to stand with their trunks fully flexed forward which, by increasing the mechanical disadvantage at the lumbosacral disc, increased the compression forces. Both compression and shear forces were affected by the increase in twisting angle. The greater the twisting angle, the higher the compression and shear forces. Regression models were developed and validated, which demonstrated high accuracy of predicting the psychophysical and biomechanical lifting capacities.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.