Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
1
Content available remote Processing and characterization of cathodic dip coated metal/composite-laminates
EN
The current trend shows an increasing demand for novel technologies, that facilitate a functional integration of fiber reinforced polymers (FRP) in metal based structures, especially in automotive industry. To comply with the requirements of large-scale production the use of fiber reinforced thermoplastics in form of hybrid metal/composite-laminates seems advantageous. By targeted exploitation of their high lightweight potential, combined with suitable capabilities for mass production and good damping properties, cost-effective and weight-optimized parts with high stiffness and load capacity can be provided for future applications. As there is little known about the processing and the mechanical properties of thermoplastic based FRP/metal-laminates, the study focuses on the development of novel hybrid laminates with low residual stresses, made of metallic steel sheets and continuous glass or carbon fiber reinforced polyamide 6. In this context, the influence of several pre-operations like sand blasting, cleaning or primer application on the interlaminar shear strength (ILSS) was examined in addition to their resistance to cathodic dip paint treatment.
2
Content available remote Nanoindentation measurements of PVD coated multilayer constructions
EN
Purpose: Carbon fibre reinforced thermoplastics (CFRP) are intensively used in lightweight applications due to their high strength to weight ratio. In addition they offer good crash, damping and recycling properties. On the basis of their morphology they are suitable for large scale manufacturing processes. A major disadvantage consists of its poor hardness properties, which is again an important requirement to realize a good erosion and wear behaviour. Design/methodology/approach: In this work the application of orthotropic carbon fibre reinforced polymers (PA6), with protective TiAlN coatings, produced by physical vapor deposition (PVD), is investigated. The characterization of the coating is performed by nanoindentation tests, roughness measurements and scanning electron microscopy. Furthermore micro hardness tests on selected well prepared cross sections are conducted, to compare the coating quality with established coating systems. Findings: By applying TiAlN coating, the hardness of the CFRP samples can be increased substantially up to 15 GPa, in comparison to the basic substrate. In addition the quality of the coating surface can be improved significantly by plasma etching pre-treatment. Research limitations/implications: The presented findings are preliminary results to prove the application of a standard processed ceramic coating on new composite types for mass production. The PVD coating process as well as the utilized testing methods are suitable to realize hard coatings on thermoplastic CFRP. This effect can be exploited for several lightweight applications to increase the erosion and wear resistance of composite materials. Originality/value: The presented results show, that ceramic coatings can be deposited on standard thermoplastic CFRP with polyamide 6 matrix. Therewith it can be expected, that the PVD coating process can make a essential contribution to increase the range of applications.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.