Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 12

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
Risks in the maritime domain have various sources, of which the transportation of oil and other noxious products is one of key concern to industry and public stakeholders. Operational or accidental releases of oil or other pollutants from ships or offshore facilities into the marine environment can have disastrous effects on the marine ecosystems, while also leading to very significant economical losses. Therefore, national states have implemented various mechanisms for preventing and responding to pollution in the maritime domain, with activities which are often embedded in regional cooperation frameworks clustered around certain sea areas. To support collaborative, harmonized, and risk-informed oil spill Pollution Preparedness and Response (PPR) planning for response authorities, the Baltic Marine Environment Protection Commission (HELCOM), together with its research partners, and with extensive end-user and stakeholder inputs, have developed the OpenRisk Toolbox. This toolbox includes several risk assessment tools and techniques, which can assist in providing answers to a range of PPR risk management questions in a range of organizational contexts. To better understand and ensure the applicability and usefulness of the OpenRisk Toolbox, a workshop was organized where some of these tools were tested. Selected end user and stakeholder views on the perceived usefulness of the tools were collected and analyzed. Another workshop focused on further development needs to implement the tools in organizational practices. This paper first presents the OpenRisk Toolbox, then describes the settings of the workshops. Finally, a summary of the end-user and stakeholder views on the tested tools, and on future development needs, is given.
EN
Oil spills from maritime activities can lead to very extensive damage to the marine environment and disrupt maritime ecosystem services. Shipping is an important activity in the Northern Baltic Sea, and with the complex and dynamic ice conditions present in this sea area, navigational accidents occur rather frequently. Recent risk analysis results indicate those oil spills are particularly likely in the event of collisions. In Finnish sea areas, the current wintertime response preparedness is designed to a level of 5000 tonnes of oil, whereas a state-of-the-art risk analysis conservatively estimates that spills up to 15000 tonnes are possible. Hence, there is a need to more accurately estimate oil spill scenarios in the Northern Baltic Sea, to assist the relevant authorities in planning the response fleet organization and its operations. An issue that has not received prior consideration in maritime waterway oil spill analysis is the dynamics of the oil outflow, i.e. how the oil outflow extent depends on time. Hence, this paper focuses on time-dependent oil spill scenarios from collision accidents possibly occurring to tankers operating in the Northern Baltic Sea. To estimate these, a Bayesian Network model is developed, integrating information about designs of typical tankers operating in this area, information about possible damage scenarios in collision accidents, and a state-of-the-art time-domain oil outflow model. The resulting model efficiently provides information about the possible amounts of oil spilled in the sea in different periods of time, thus contributing to enhanced oil spill risk assessment and response preparedness planning.
EN
In many sea areas there is significant recreational activity, with many sailing vessels and motor boats navigating, especially in coastal areas. Search and Rescue (SAR) organizations ensure the safety of people at sea, and are relatively frequently called to perform rescue or assistance missions to people in distress. Apart from the importance of adequate operational planning and training, rescue organizations benefit from establishing a robust, effective and cost-efficient response system. Risk-informed capacity planning can serve as a decision-support tool for determining the number and location of the required search and rescue units (SRUs). The purpose of this paper is to present such a risk-informed approach, which combines analysis of historic accident and incident data of recreational boating with information derived from Geographic Information System (GIS) methods. The method is applied to a case study focusing on the risk-informed capacity evaluation of the voluntary search and rescue services in the Finnish part of the Gulf of Finland. Results indicate that the response performance for recreational boating incidents is very good in most areas.
EN
The environmental conditions in the Gulf of Finland vary significantly in different locations. In addition, the gulf is a busy and important area for waterway traffic and international trade throughout the year. In summer, the area is ideal for recreational activities such as boating and other water-related activities. Water accidents occur due to different factors and under varying weather conditions. This paper introduces a visual data mining analysis applied to Search and Rescue (SAR) missions related to recreational boating. Starting from a SAR operations database, an integrated database was constructed by adding weather and wave data. The aim was to compare the different mission types as well as the activity of different SAR organisations during challenging wind and wave conditions. The investigation was performed using visual analysis techniques. The densest areas of challenging wind and wave conditions were found in the western and eastern parts of the gulf. Other investigated parameters were travelled distances and occurrence of the incidents during different times of day. A more detailed analysis was conducted for one dataset.
EN
For safe and efficient exploitation of ice-covered waters the knowledge about ship performance in ice is crucial. Although ice navigation has received substantial attention over recent decades, there is still no known modelling technique to predict ship’s speed in a dynamic ice field. In order to gain an insight into this process, we need to transform the available data into information first. Only then information can be used to develop new knowledge. This paper demonstrates how to transform still data into dynamic information about operation of maritime transportation system in ice-covered waters. For this purpose, the data from the Automatic Identification System about the performance of a selected ship is used along with a numerical ice forecast model describing the ice field in the analysed sea area.
PL
W celu bezpiecznej oraz wydajnej eksploatacji akwenów pokrytych lodem, wiedza o zachowaniu statku w tych warunkach jest niezbędna. Pomimo, iż żegluga w lodach pozostaje tematem wielu opracowań naukowych, tematyka modelowania zachowania statku w dynamicznym polu lodowym, zwłaszcza w obecności zjawiska kompresji pokrywy lodowej, pozostaje wciąż kwestią otwartą. W artykule omówiono dostępne źródła danych, które po odpowiednim przetworzeniu dostarczą informacji, umożliwiającej lepsze zrozumienie procesu nawigacji statku w dynamicznym polu lodowym co pozwoli na modelowanie tego procesu. W artykule podkreślono zasadność przeprowadzenia procesu przekształcenia danych w informację które następnie można wykorzystać w celu uzyskania nowej wiedzy. Na przykładzie pokazano, iż nawet najdokładniejsze dane, nie dostarczą pełnej informacji, jeżeli nie zostaną odpowiednio przetworzone oraz zinterpretowane, co może prowadzić do błędnych lub niepełnych wniosków.
6
Content available On a risk perspective for maritime domain
EN
In the maritime domain, the risk is evaluated within the framework of Formal Safety Assessment (FSA), introduced by International Maritime Organization in 2002. Although the FSA has become internationally recognized and recommended method, the definition, which is adopted there, to describe the risk, seems to be too narrow to reflect properly the actual content of the FSA. Therefore this article discusses methodological requirements for the risk perspective, which is appropriate for risk management in the maritime domain with the special attention to maritime transportation systems (MTS). This perspective considers risk as a set encompassing the following: the set of plausible scenarios leading to an accident, the likelihoods of the unwanted events within the scenarios and the consequences of the events. These elements are conditional upon the available knowledge about the analyzed system, and understanding of the system behaviour, therefore these two are inherent parts of risk analysis, and need to be included in the risk description.
EN
The collision dynamics model is a vital part in maritime risk analysis. Different models have been introduced since Minorsky first presented collision dynamics model. Lately, increased computing capac-ity has led to development of more sophisticated models. Although the dynamics of ship collisions have been studied and understanding on the affecting factors is increased, there are many assumptions required to com-plete the analysis. The uncertainty in the dynamic parameters due to assumptions is not often considered. In this paper a case study is conducted to show how input models for dynamic parameters affect the results of collision energy calculations and thus probability of an oil spill. The released deformation energy in collision is estimated by the means of the analytical collision dynamics model Zhang presented in his PhD thesis. The case study concerns the sea area between Helsinki and Tallinn where a crossing of two densely trafficked wa-terways is located. Actual traffic data is utilized to obtain realistic encounter scenarios by means of Monte Carlo simulation. Applicability of the compared assumptions is discussed based on the findings of the case study.
8
Content available remote Simplified Risk Analysis of Tanker Collisions in the Gulf of Finland
EN
Maritime traffic poses various risks in terms of human casualties, environmental pollution or loss of property. In particular, tankers pose a high environmental risk as they carry very large amounts of oil or more modest amounts of possibly highly toxic chemicals. In this paper, a simplified risk assessment meth-odology for spills from tankers is proposed for the Gulf of Finland, for tankers involved in a ship-ship collision. The method is placed in a wider risk assessment methodology, inspired by the Formal Safety Assess-ment (FSA) and determines the risk as a combination of probability of occurrence and severity of the consequences. The collision probability model is based on a time-domain micro simulation of maritime traf-fic, for which the input is obtained through a detailed analysis of data from the Automatic Identification System (AIS). In addition, an accident causation model, coupled to the output of the traffic simulation model is proposed to evaluate the risk reduction effect of the risk control options. Further development of the model is needed, but the modular nature of the model allows for continuous improvement of the modules and the ex-tension of the model to include more hazards or consequences, such that the effect of risk control options can be studied and recommendations made. This paper shows some preliminary results of some risk analysis blocks for tanker collisions in the Gulf of Finland.
9
Content available remote A Decision Support Tool for VTS Centers to Detect Grounding Candidates
EN
AIS (Automatic Identification System) data analysis is used to define ship domain for ground-ing scenarios. The domain has been divided into two areas as inner and outer domains. Inner domain has clear border, which is based on ship dynamic characteristics. Violation of inner domain makes the grounding acci-dent unavoidable. Outer domain area is defined with AIS data analyzing. Outer domain shows the situation of own ship in compare with other similar ships that previously were in the same situation. The domain can be used as a decision support tool in VTS (Vessel Traffic Service) centers to detect grounding candidate vessels. In the case study presented in this paper, one type of ship, which is tanker, in a waterway to Sköldvik in the Gulf of Finland is taken into account.
EN
In this paper, a study on a newly developed geometrical model for ship-ship collisions probability estimation is conducted. Most of the models that are used for ship-ship collision consider a collision be-tween two ships a physical contact between them. The model discussed in this paper defines the collision cri-terion in a novel way. A critical distance between two meeting ships at which such meeting situation can be considered a collision is calculated with the use of a ship motion model. This critical distance is named the minimum distance to collision (MDTC). Numerous factors affect the MDTC value: a ship type, an angle of intersection of ships’ courses, a relative bearing between encountering ships and a maneuvering pattern. They are discussed in the paper.
EN
In this paper a comparative method for assessing a causation factor for a geometrical model for ship-ship collision probability estimation is introduced. The results obtained from the model are compared with the results of an analysis of near-collisions based on recorded AIS data and then with the historical data on maritime accidents in the Gulf of Finland. The causation factor is obtained for three different meeting types, for a chosen location and prevailing traffic conditions there.
12
Content available A model for risk analysis of oil tankers
EN
The paper presents a model for risk analysis regarding marine traffic, with the emphasis on two types of the most common marine accidents which are: collision and grounding. The focus is on oil tankers as these pose the highest environmental risk. A case study in selected areas of Gulf of Finland in ice free conditions is presented. The model utilizes a well-founded formula for risk calculation, which combines the probability of an unwanted event with its consequences. Thus the model is regarded a block type model, consisting of blocks for the probability of collision and grounding estimation respectively as well as blocks for consequences of an accident modelling. Probability of vessbl colliding is assessed by means of a Minimum Distance To Collision (MDTC) based model. The model defines in anovel way the collision zone, using mathematical ship motion model and recognizes traffic flow as a non homogeneous process. The presented calculations address waterways crossing between Helsinki and Tallinn, where dense cross traffic during certain hours is observed. For assessment of, a grounding probability, a new approach is proposed, which utilizes a newly developed model, where spatial interactions between objects in different locations are recognized. A, ship at a seaway and navigational obstructions may be perceived as interacting objects and their repulsion may be modelled by a sort of deterministic formulation. Risk due to tankers running aground addresses an approach fairway to an oil terminal in Skoldvik, near Helsinki. [...]
PL
W artykule przedstawiono model oceny ryzyka w transporcie morskim, w aspekcie kolizji statków oraz wejść na mieliznę. W modelu przyjęto jeden typ statków, tankowce do przewozu ropy naftowej, z uwagi na fakt, iż w przypadku wystąpienia kolizji lub kontaktu z dnem statek ten może stanowić bardzo poważne zagrożenie dla środowiska. W pracy przedstawiono dwa nowatorskie podejścia do modelowania prawdopodobieństwa wystąpienia powyższych wypadków. Model do oceny prawdopodobieństwa kolizji statków definiuje w nowy sposób strefę kolizji, w oparciu o właściwości manewrowe statku oraz jego hydrodynamikę. Intensywność ruchu morskiego na analizowanym akwenie modelowana jest w oparciu o proces niestacjonarny, w przeciwieństwie do istniejących modeli. Model oceny prawdopodobieństwa wejścia na mieliznę wykorzystuje model grawitacyjny, który wyznacza bezpieczny obszar manewrowy dla danego statku i danego akwenu. W modelu tym statek i otaczające go płycizny traktowane są jako masy, wzajemnie na siebie oddziaływujące. Obydwa modele wykorzystują dane o ruchu statków zarejestrowane w systemie automatycznej identyfikacji statków (AIS). Analiza ryzyka przeprowadzona została dla dwóch wybranych akwenów w Zatoce Fińskiej. Jako konsekwencje wypadku przyjęto model kosztów, skonstruowany w oparciu o dane statystyczne z międzynarodowego funduszu IOPCF, który pokrywa koszty w związku z rozlewem olejowym na morzu.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.