The increasing use of drone technology to produce high-resolution digital imagery and elevation models has been associated with a growing interest in developing quantitative morphometric analysis (QMA). QMA analysis is an invaluable part of creating detailed topographic models in landslide scars that are still highly unstable and prone to erosion. This paper presents the results of a research that aims to create a topographic model in a landslide scarred area where the slope configuration is still varied. The study area was located in the landscape of the Cretaceous-Tertiary volcanic transition where many landslides have occurred. Three landslides were selected on the basis of different soil material characteristics that affect the topographic condition of the landslide scar. Aerial photography was recorded using a UAV with a flying height of 80 m, with an orthomosaic resolution of 1 cm. In detail, three morphometric variables (slope, plan curvature, topographic position index) were selected and calculated with the output evaluated based on visual-spatial interpretation. The results showed that morphometric variables performed well in modeling land surface topography. Steep slopes and surfaces with convex curvature are abundant at the ledges and landslide heads that allow water runoff to disperse as the initiation of gully erosion. The multidimensional gully erosion network is concentrated at relatively low elevations and surfaces with concave curvature. The undulating micro-relief of the land surface as a result of the process of material disposition builds up on each other to a gentle slope. Finally, the topographic model of the landslide surface can be used as a base material in implementation of both physical and vegetative land conservation strategies.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.