Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
In this study, we used boundary layer heights derived from lidar in Romania to validate the Weather Research Forecast (WRF) model improved by ARIA Technologies SA in the framework of ROMAIR LIFE project. Lidar retrievals were also compared to the retrievals from meteorological data, both modeled (Global Data Assimilation System; GDAS) and measured (microwave radiometry). Both the gradient and the wavelet covariance methods were used to compute the boundary layer height (BLH) from the range corrected lidar signal, and their equivalence was shown. The analysis was performed on 102 datasets, spread over all seasons and 3 years (2009-2011). A good agreement was found for the remote sensors (lidar and microwave radiometer) which are co-located and measure simultaneously. The correlation of the measured boundary layer height and the modelled one was 0.66 for the entire dataset, and 0.73 when considering daytime data, i.e., for a well defined boundary layer. A systematic underestimation of the boundary layer height by the WRF during non-convective periods (nocturne, stable atmosphere) was found.
EN
After Eyjafjallajökull volcano eruption on 14 April 2010, due to a complex air mass circulation, Romania was exposed to volcanic ash and its mixture with continental aerosols. Ash particles with an average Ångström (UV-VIS) exponent of 1.4 ± 0.2 and (VIS-IR) of 1.2 ± 0.3, a color ratio (VIS-UV) of 0.54 and (IR-VIS) of 0.49, an average particle depolarization value ~9.4%, and a lidar ratio of 50 sr were retrieved on 18 April from multiwavelength Raman lidar measurements in Bucharest. Mixed volcanic ash with mineral dust particles advected from Sahara, depolarization ~12%, Ångström (UV-VIS) exponent of 1.25 ± 0.25 and (VIS-IR) of 1.45 ± 0.25, an increased color ratio (VIS-UV) of 0.61, (IRVIS) of 0.39 and lidar ratio of 53 sr were identified on 28 April. From observations in Poland conducted by an elastic lidar at 532 nm and a ceilometer at 1064 nm we retrieved an average backscatter related Ångström (VIS-IR) exponent of 1.25 ± 0.35, and a color ratio (IR-VIS) of 0.53 in the layer at about 5.5 km during the night of 16/17 April, indicating fresh ash over Warsaw.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.