In this paper we present a novel approach that enables the determination and measurement of important features associated with the human body movement. This information can be used in the construction of a biometric personal identification system. Biometrics is, essentially, a pattern recognition system based on measurements of unique physiological or behavioural features as acquired from an individual. The domain of biometric techniques is currently placed within recently developed disciplines of science. Biometry or biometrics is simply defined as automatically recognizing a person using distinguishing traits and is widely used in various security systems. Biometry can be defined as a method of personal identification based on individuals' physical and behavioural features. Physiological biometrics covers data coming directly from a measurement of part of a human body, for example a fingerprint, the shape of the face, or from the retina. Behavioural biometrics analyses data obtained on the basis of an activity performed by a given person, for example speech and the handwritten signature. The system of biometrics defined above can now be expanded, and a new biometrics system can be considered. In our approach, human foot pressure on a surface is measured and the pressure data retrieved. The pressure parameters are collected without the necessity of any movements of the feet.
The reported diagnosis supporting system was provided with knowledge base determined by the disease characteristic features descriptors that were recorded in conclusions table. Every descriptor defines the elementary rules related to every disease factor threshold value, recognised as a sign of the disease presence (the over-gone physiological state). The introduced definitions of the disease characteristics and some fuzzy logic proposals implementations were defined for the decision making system development.
The paper concerns the implementation of some diagnostic measures describing gait disturbances produced by neurological diseases. The discussed contribution explains various experiments provided by the authors' works on Parotec System for Windows development [1]. The subject of the investigations was defined by many experiments carried-out at clinics, with gait's characteristic features analysis, involving the fuzzy logic paradigms. The linguistic notations of diagnostic classes are computed dynamically in accordance with disease statistics, provided by the characteristics of the patient under investigation. The comprehensive system was recognised as a friendly user package, which insulates the user from the complex analysis of measures describing the physiological gait characteristic features. What is more, the application has the ability to be tuned more precisely after the data record size has grown. The software-units implementation provided the user with a selftuned system that enriches the application knowledge, during the data acquisition, while the set of the data records is still growing.
The paper concerns the use of diagnostic measures for detection of gait disturbances for neurological pathologies identification. Project of using the PSW (Parotec System for Windows) system for detection of gait's characteristics described by the expert doctor and collected in knowledge base stored using modified Horn's rules with fuzzy linguistic notions was based on several years of experience in implementation and use of the PSW system. Linguistic notions are computed dynamically with use of diagnostic measure distribution of examined population. It makes system more friendly (isolates expert from questions which values of measures describe physiological gait), on the other hand it provides self-tuning of system during acquisition of still growing amount of measurements collected. Condition of correct pathology classification is to obtain proper description of disturbance from an expert and collection of explorations among pathological and physiological population. The best way of tuning the system is to use it for sift research. An implementation of system is currently at the final stage.
The paper presents the data base structure where fuzzy logic defines the threshold of the foot abnormality. The conclusion making unit supports Parotec System for Windows (PSW) [1], the diagnostic equipment that allows to discus the diseases factors observed on a patient’s static and dynamic footprint. The fuzzy logic roles are used for pathological features selection. They classify the data records putting them into the most relevant pathology. The presented system allows to enter roles describing the disease instead of giving a strict definition. When number of roles grows the fuzzy threshold is getting the strict value. The early results of the system development are described in the paper. The conclusion making unit has been evaluated by several records. For full evaluation of the system more experiments are planed to be done in clinics.
PL
Praca prezentuje system wspomagania diagnozy wykorzystujący regułową bazę wiedzy z pojęciami rozmytymi. System nie rozpoznaje schorzeń, lecz podpowiada patologie związane z nieprawidłowym (nie fizjologicznym) obciążeniem wybranych stref stopy w statyce i dynamice. Informacją potrzebną do prawidłowego funkcjonowania systemu jest zbiór pomiarów pozyskanych przy użyciu narzędzia Parotec System for Windows (PSW). Drugim elementem wykorzystywanym w procesie wnioskowania jest baza wiedzy z regułami rozmytymi ekstrahowana od lekarza – eksperta. Wiedza zapisywana jest w formie koniunkcji warunków pierwotnych opartych na relacji wartości funkcji filtracji do lingwistycznego pojęcia względnego – oddającego wartość wybranego czynnika do odpowiedniej wartości dla całej populacji zebranej w bazie pomiarów. W dynamicznym procesie wnioskowania udostępniono trzy metody wyznaczania term (trójkąty o równych i nierównych podstawach) obejmujących całą dziedzinę pomiarów, oraz odrzucenie pomiarów obarczonych błędem przypadkowym wykraczających poza odchylenie standardowe wyznaczone funkcją Gaussa. Prezentowany system udostępnia możliwość wprowadzania reguł w sposób opisowy bez konieczności dokładnej analizy wartości wielkości mierzonych przez PSW. W procesie defuzyfikacji wyznaczona jest ostra wartość wynikła z superpozycji wartości warunków pierwotnych składających się na regułę wnioskowania lecz końcowym rezultatem diagnozy jest pojęcie rozmyte opisujące „natężenie” występującej patologii.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.