Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
1
Content available Pinch modes in the SPEED2 plasma focus
EN
Deuterium discharges in the SPEED2 plasma focus (80 kJ, 200 kV, 2 MA, 400 ns) have been found unexpectedly stable within the operational regime as a neutron source. Only at higher filling pressures (above 6 mbar) sometimes m=0 instabilities appeared in the pinch column, especially in discharges of lower efficiency (moderate dynamics and neutron yield). Enhancing the electromagnetic radiation by doping these discharges with heavy gases (e.g. neon, argon) distinctly two pinch modes are produced, the micropinch mode (MPM) or the stable column mode (SCM), with a transition regime where the initial SCM is followed by the MPM. Micropinches are local radiative collapses initiated by m=0 instabilities of low-energy- density pinch plasmas. These instabilities and the successive micropinches can be suppressed by kinetic deuterons produced during dynamical compression of high-energy-density deuterium plasma sheaths. Depending on the relaxation of this fast deuteron component the pinch column can be stabilized for several tens of nanoseconds. While the short-lived (appr. 1 ns) micropinches erratically appear as point-like successive flashes along the pinch axis with temperatures about 1 keV and about solid density the reproducible SCM, optimized with respect to the compression ratio, forms a powerful linear radiation source of temperatures and densities similar to the MPM. The SCM needs powerful (fast) drivers in order to use the kinetic ion stabilization, but not necessarily MA currents as available from the SPEED2 driver. This opens the possibility to establish the SCM also in compact experiments like SPEED3 (8 kJ, 80 kV, 0.8 MA, 300 ns) or even SPEED4 (2 kJ, 40 kV, 250 kA, 300 ns).
EN
High current linear discharges confined by their own magnetic field are subject to magneto-hydrodynamic instabilities which perturb a straight plasma column. An example is the m=0 mode, which is characterised by the development of necks contracting rapidly towards the axis with the ion sound speed. Discharges through capillaries were assumed to be stable hitherto, but by cutting capillaries lengthwise after a few shots hot spot traces clearly imprinted on the inner wall of the capillary are observed. They are interpreted as marks of an m=0 instability, and this interpretation is substantiated by a series of time-gated pinhole images, which show that the hot plasma region is clearly detached from the wall at the second current maximum and concentrated on the axis thus making the development of the instability possible. The instability occurs only with a specific sample of polyacetal as wall material, and its axial wavelength increases with the length of the capillary. By modulating respectively the inner wall of the capillary the wavelength can be imposed within limits. This is exploited for a soft X-ray laser scheme based on charge exchange pumping of bare carbon ions of hot plasma streaming from the necks and colliding with cold plasma outside the neck regions. Exponential growth of the Balmer-alfa line of CVI at 18.22 nm is realised.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.