The present study is focused to explore the photonic device applications of L-arginine doped ZTC (LA-ZTC) crystals using nonlinear optical (NLO) and dielectric studies. The LA-ZTC crystals have been grown by slow evaporation solution technique. The chemical composition and surface of LA-ZTC crystal have been analyzed by means of energy dispersive spectroscopy (EDS) and surface scanning electron microscopy (SEM) techniques. The Vicker’s microhardness study has been carried out to determine the hardness, work hardening index, yield strength and elastic stiffness of LA-ZTC crystal. The enhanced SHG efficiency of LA-ZTC crystal has been ascertained using the Kurtz-Perry powder SHG test. The closed-and-open aperture Z-scan technique has been employed to confirm the third order nonlinear optical nature of LA-ZTC crystal. The Z-scan transmittance data has been utilized to calculate the superior cubic susceptibility, nonlinear refractive index, nonlinear absorption coefficient and figure of merit of LA-ZTC crystal. The behavior of dielectric constant and dielectric loss of LA-ZTC crystal at different temperatures has been investigated using the dielectric analysis.
2
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
Glycine doped potassium thiourea chloride (PTC) crystal has been grown by slow solution evaporation technique. The dielectric studies have been employed to examine substantial improvement in dielectric constant and dielectric loss of glycine doped PTC crystal. The etching studies have been performed to investigate the surface quality of this crystal. The z-scan studies have been carried out at 632.8 nm to explore the third order nonlinear optical nature. The negative nonlinear refraction of glycine doped PTC crystal was found to be of 7.27 × 10-12cm2/W. The origin of high magnitude of third order nonlinear optical susceptibility and reverse saturable nonlinear absorption have been investigated. The obtained results were explored to discuss the nonlinear optical applications of PTC crystal.
3
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
Triglycine acetate (TGAc), a nonlinear optical material, has been synthesized. The second harmonic generation efficiency has been determined by Kurtz's powder test and it was found to be 1.55 times more than potassium dihydrogen phosphate. The solubility studies were carried out in the temperature range 30-55 °C. Single crystals of TGAc have been grown by slow evaporation of solution at 30 °C. The cell parameters were determined by the X-ray diffraction analysis. The UV-visible absorption spectra have been recorded to study the optical transmittance in the range from 200 nm to 800 nm. The Fourier transform infrared analysis identified various functional groups present in the material. The mass spectral analysis was carried out to measure the total molecular weight of the grown crystal. Using thermogravimetric analysis the thermal behaviour was studied.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.