Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 4

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
Mechanical vibration of plates have applications in many fields of science and industry including synthesis of artificial reverberation - one of the most important signal processors in audio engineering. The paper presents a concept for study and measurements of reverberating plates that contains an initial numerical solution with a goal of predicting behaviours of the vibrating plate as its response for physically affecting its vibration. The concept also considers experimental measurements of selected simplified solutions as well as their comparison with numerical simulation. In addition the paper contains evidence for perceptible differences between audio signals obtained from the initial experiments, which suggests the viability of adjustable mechanical reverberation mechanism. Moreover, the paper includes concept for test stand for experimental study of reverberating plates in order to achieve signals differing in perceptually significant way. The test stand and study will allow to increase knowledge of vibrating plates as parts of plate reverberation devices.
EN
In pitched sounds the ratios between frequencies of spectral components remain close to natural numbers. In acoustic instruments these ratios deviate from exact values due to damping or boundary conditions, complicating use of musical systems defining frequency ratios associated with musical intervals. If such system is imposed on the fundamental frequencies of pitches consisting a chord, higher spectral components may deviate noticeably, strengthening or weakening the effects of beating and roughness caused by their proximity, and changing chord characteristics in terms of consonance-dissonance gradation. Unlike acoustic instruments, sound synthesizers can precisely adjust components of generated signal, and use this phenomenon as a controllable timbre effect. For this purpose spectral components of a chord within the range of beating and roughness are modified to gradually strengthen or weaken both phenomena. The study presents the assumptions of the effect and its implementation in a sound synthesizer based on the additive method.
EN
Sound synthesis using mathematical modelling of musical instruments is a method particularly well suited for live performance using a physical controller. Depending on model complexity, it may be able to reproduce various subtle phenomena related to excitation and real time control of an instrument, providing an intuitive tool for a musician. A variant of physical modelling synthesis, referred to as the simulation of infeasible instruments, uses a model of an object that does not have a physical counterpart. Such model has some properties of a real object, which makes it still intuitive for a musician. However, other features, such as geometry, or material properties, are intentionally altered in such manner, that it could not function in reality. These infeasible features introduce new properties to the sound it produces. The study presents a few such models with a discussion regarding their implementation and control issues in a real-time sound synthesizer.
4
Content available On the Audibility of Electric Guitar Tonewood
EN
Electric guitar manufacturers have used tropical woods in guitar production for decades claiming it as beneficiary to the quality of the instruments. These claims have often been questioned by guitarists but now, with many voices raising concerns regarding the ecological sustainability of such practices, the topic becomes even more important. Efforts to find alternatives must begin with a greater understanding of how tonewood affects the timbre of an electric guitar. The presented study examined how the sound of a simplified electric guitar changes with the use of various wood species. Multiple sounds were recorded using a specially designed test setup and their analysis showed differences in both spectral envelope and the generated signal level. The differences between the acoustic characteristics of tones produced by the tonewood samples explored in the study were larger than the just noticeable differences reported for the respective characteristics in the literature. To verify these findings an informal listening test was conducted which showed that sounds produced with different tonewoods were distinguishable to the average listener.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.