Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
An analytical solution has been developed developed in this research for electro-mechanical flexural response of smart laminated piezoelectric composite rectangular plates encompassing flexible-spring boundary conditions at two opposite edges. Flexible-spring boundary structure is introduced to the system by inclusion of rotational springs of adjustable stiffness which can vary depending on changes in the rotational fixity factor of the springs. To add to the case study complexity, the two other edges are kept free. Three advantages of employing the proposed analytical method include: (1) the electro-mechanical flexural coupling between the piezoelectric actuators and the plate’s rotational springs of adjustable stiffness is addressed; (2) there is no need for trial deformation and characteristic function—therefore, it has higher accuracy than conventional semi-inverse methods; (3) there is no restriction imposed to the position, type, and number of applied loads. The Linear Theory of Piezoelectricity and Classical Plate Theory are adopted to derive the exact elasticity equation. The higher-order Fourier integral and higher-order unit step function differential equations are combined to derive the analytical equations. The analytical results are validated against those obtained from Abaqus Finite Element (FE) package. The results comparison showed good agreement. The proposed smart plates can potentially be applied to real-life structural systems such as smart floors and bridges and the proposed analytical solution can be used to analyze the flexural deformation response.
EN
Dome curvatures of pressure vessels often sustain highest level of stresses when subjected to various loading conditions. This research is aimed at investigating the effect of dome geometrical shape (hemispherical, torispherical, and ellipsoidal domes) on mechanical deformation and crack length of laminated woven reinforced polymer (GRP) composite pressure vessels under low-velocity impact (LVI) (case one) or combination of LVI and internal pressure (case two). The study is based on finite element (FE) simulations with laboratory-based experimental validation studies. It was observed that the maximum vertical displacements () and crack length along the diameter of deformation (a) are both of lower magnitude in case one. Damage intensity and fracture differ for different combinations of loading. Only matrix breakage and debonding occurs in case one and fiber breakage occurs in case two. The dome geometric shapes used in this study were found to be invariant to both damage intensity and failure modes. Irrespective of the type of load applied, the magnitude of and crack length correlate with dome geometric shape as the maximum and the minimum occur in torispherical and hemispherical domes, respectively. The maximum and the minimum crack lengths also take place in torispherical and hemispherical domes, respectively.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.